Advances in Hyperspectral and Diffraction Imaging for Agricultural Applications

Guardado en:
Detalles Bibliográficos
Publicado en:Agriculture vol. 15, no. 16 (2025), p. 1775-1805
Autor principal: Chen, Li
Otros Autores: Wu, Yu, Yang, Ning, Sun Zongbao
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3243924367
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15161775  |2 doi 
035 |a 3243924367 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Chen, Li  |u Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China 
245 1 |a Advances in Hyperspectral and Diffraction Imaging for Agricultural Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Hyperspectral imaging and diffraction imaging technologies, owing to their non-destructive nature, high efficiency, and superior resolution, have found widespread application in agricultural diagnostics. This review synthesizes recent advancements in the deployment of these two technologies across various agricultural domains, including the detection of plant diseases and pests, crop growth monitoring, and animal health diagnostics. Hyperspectral imaging utilizes multi-band spectral and image data to accurately identify diseases and nutritional status, while combining deep learning and other technologies to improve detection accuracy. Diffraction imaging, by exploiting the diffraction properties of light waves, facilitates the detection of pathogenic spores and the assessment of cellular vitality, making it particularly well-suited for microscopic structural analysis. The paper also critically examines prevailing challenges such as the complexity of data processing, environmental adaptability, and the cost of instrumentation. Finally, it envisions future directions wherein the integration of hyperspectral and diffraction imaging, through multisource data fusion and the optimization of intelligent algorithms, holds promise for constructing highly precise and efficient agricultural diagnostic systems, thereby advancing the development of smart agriculture. 
653 |a Food security 
653 |a Accuracy 
653 |a Livestock 
653 |a Data processing 
653 |a Animal health 
653 |a Digital agriculture 
653 |a Medical imaging 
653 |a Structural analysis 
653 |a Feature selection 
653 |a Instrumentation 
653 |a Plant diseases 
653 |a Data integration 
653 |a Deep learning 
653 |a Technology 
653 |a Efficiency 
653 |a Light diffraction 
653 |a Agriculture 
653 |a Nutritional status 
653 |a Wave diffraction 
653 |a Crop growth 
653 |a Pests 
653 |a Sensors 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Classification 
653 |a Diagnostic systems 
653 |a Algorithms 
653 |a Cellular structure 
653 |a Spores 
653 |a Light 
653 |a Resource management 
653 |a Hyperspectral imaging 
653 |a Environmental 
700 1 |a Wu, Yu  |u Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China 
700 1 |a Yang, Ning  |u School of Electrical & Information Engineering, Jiangsu University, Zhenjiang 212013, China 
700 1 |a Sun Zongbao  |u Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China 
773 0 |t Agriculture  |g vol. 15, no. 16 (2025), p. 1775-1805 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243924367/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243924367/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243924367/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch