Multi-Objective Optimization of Transonic Variable Camber Airfoil with Leading- and Trailing-Edge Deflections Using Kriging Surrogate Model

Guardado en:
Detalles Bibliográficos
Publicado en:Aerospace vol. 12, no. 8 (2025), p. 659-683
Autor principal: Wang, Wei
Otros Autores: He, Feng, Cui Shenao, Li Zhandong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3243962072
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12080659  |2 doi 
035 |a 3243962072 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Wang, Wei 
245 1 |a Multi-Objective Optimization of Transonic Variable Camber Airfoil with Leading- and Trailing-Edge Deflections Using Kriging Surrogate Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To investigate the aerodynamic characteristics and multi-objective optimization of the variable camber airfoils, the influence of leading- and trailing-edge deflections on aerodynamic performance is conducted. A novel prediction model is presented using the Kriging surrogate model, with leading and trailing edge deflection angles as inputs and lift coefficients and drag coefficients as outputs. The Non-dominated Sorting Genetic Algorithm II (NSGA II) multi-objective optimization technique is applied to ascertain the ideal deflection parameters. The results show that upward deflection of the leading edge raises the lift, whereas downward deflection increases the value of the critical angle of attack. The deflection of the trailing edge increases the value of the critical angle of attack, while the downward deflection can enhance the lift coefficient. Appropriate upward deflections of both leading and trailing edges can delay the critical Mach number, while downward deflections of both the leading and trailing edges can enhance the value of the critical Mach number. The discrepancies between the Kriging model prediction and the CFD simulation are less than 2%. Compared to the basic airfoil, the aerodynamic performance of the optimized airfoil has been improved, with the lift coefficient increasing by 7.55% and 7.37% and the lift-to-drag ratio rising by 6.97% and 10.27% at two Mach numbers, respectively. The efficiency and reliability of this method have been verified. 
610 4 |a National Aeronautics & Space Administration--NASA 
653 |a Software 
653 |a Accuracy 
653 |a Drag coefficients 
653 |a Trailing edges 
653 |a Investigations 
653 |a Aerodynamic coefficients 
653 |a Optimization techniques 
653 |a Camber 
653 |a Airfoils 
653 |a Pressure distribution 
653 |a Multiple objective analysis 
653 |a Sorting algorithms 
653 |a Pareto optimum 
653 |a Aerodynamic characteristics 
653 |a Efficiency 
653 |a Aircraft 
653 |a Drag 
653 |a Deflection 
653 |a Design optimization 
653 |a Genetic algorithms 
653 |a Evolution & development 
653 |a Prediction models 
653 |a Mach number 
653 |a Aerodynamics 
653 |a Neural networks 
653 |a Optimization 
653 |a Critical angle 
653 |a Variables 
653 |a Angle of attack 
700 1 |a He, Feng 
700 1 |a Cui Shenao 
700 1 |a Li Zhandong 
773 0 |t Aerospace  |g vol. 12, no. 8 (2025), p. 659-683 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243962072/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243962072/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243962072/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch