A Layout Optimization Design Method for Flat-Panel Satellites with In-Orbit Validation
Shranjeno v:
| izdano v: | Aerospace vol. 12, no. 8 (2025), p. 707-727 |
|---|---|
| Glavni avtor: | |
| Drugi avtorji: | , , , |
| Izdano: |
MDPI AG
|
| Teme: | |
| Online dostop: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Oznake: |
Brez oznak, prvi označite!
|
| Resumen: | Since 2019, Starlink satellites, with their innovative flat-panel design and unprecedented number in orbit, have transformed the traditional satellite industry. Due to their mass production characteristics, flat-panel satellites face a pressing need for satellite layout optimization design (SLOD), particularly for feasible optimization results applicable in engineering. Existing layout optimization algorithms often focus on theoretical optima, computational efficiency, and multi-objective capabilities. Most algorithms are validated exclusively through numerical or CAD-based simulations, leaving their engineering applicability under-reported. This paper establishes a simplified mathematical model of SLOD with consideration for the key features of flat-panel satellites. Furthermore, we propose a differential evolution algorithm that leverages local optima for the layout optimization design of flat-panel satellites. By making targeted and limited improvements to initial human-designed layouts, the algorithm generates practical engineering solutions that significantly enhance the stacking efficiency, mass properties, and thermal distribution of flat-panel satellites. Finally, the effectiveness and engineering feasibility of the algorithm were verified through the design of Longjiang-3, China’s first flat-panel satellite, and the results were also validated in orbit. Compared with the baseline configuration, the optimized layout reduces the principal moment of inertia by 6.6% and the satellite module height by 3.5%. It also achieves a significant improvement in thermal power uniformity across the structure. Overall, the key layout metrics are enhanced by 26%. The present research results provide a theoretical basis and engineering solutions for the SLOD of flat-panel satellites. |
|---|---|
| ISSN: | 2226-4310 |
| DOI: | 10.3390/aerospace12080707 |
| Fuente: | Advanced Technologies & Aerospace Database |