An Early Investigation of the HHL Quantum Linear Solver for Scientific Applications

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 8 (2025), p. 491-512
Autor principal: Zheng Muqing
Otros Autores: Liu Chenxu, Stein, Samuel, Li, Xiangyu, Mülmenstädt Johannes, Chen Yousu, Ang, Li
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3243965669
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18080491  |2 doi 
035 |a 3243965669 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Zheng Muqing 
245 1 |a An Early Investigation of the HHL Quantum Linear Solver for Scientific Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this paper, we explore using the Harrow–Hassidim–Lloyd (HHL) algorithm to address scientific and engineering problems through quantum computing, utilizing the NWQSim simulation package on a high-performance computing platform. Focusing on domains such as power-grid management and climate projection, we demonstrate the correlations of the accuracy of quantum phase estimation, along with various properties of coefficient matrices, on the final solution and quantum resource cost in iterative and non-iterative numerical methods such as the Newton–Raphson method and finite difference method, as well as their impacts on quantum error correction costs using the Microsoft Azure Quantum resource estimator. We summarize the exponential resource cost from quantum phase estimation before and after quantum error correction and illustrate a potential way to reduce the demands on physical qubits. This work lays down a preliminary step for future investigations, urging a closer examination of quantum algorithms’ scalability and efficiency in domain applications. 
653 |a Quantum computing 
653 |a Accuracy 
653 |a Fourier transforms 
653 |a Experiments 
653 |a Error correction 
653 |a Finite difference method 
653 |a Optimization 
653 |a Newton-Raphson method 
653 |a Decomposition 
653 |a Algorithms 
653 |a Eigenvalues 
653 |a Numerical methods 
653 |a Linear algebra 
653 |a Qubits (quantum computing) 
700 1 |a Liu Chenxu 
700 1 |a Stein, Samuel 
700 1 |a Li, Xiangyu 
700 1 |a Mülmenstädt Johannes 
700 1 |a Chen Yousu 
700 1 |a Ang, Li 
773 0 |t Algorithms  |g vol. 18, no. 8 (2025), p. 491-512 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243965669/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243965669/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243965669/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch