Evapotranspiration Differences, Driving Factors, and Numerical Simulation of Typical Irrigated Wheat Fields in Northwest China

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Agronomy vol. 15, no. 8 (2025), p. 1984-2013
Prif Awdur: Yang, Tianyi
Awduron Eraill: Chen Haochong, Yu Haichao, Liao Zhenqi, Yang, Danni, Li, Sien
Cyhoeddwyd:
MDPI AG
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3243968678
003 UK-CbPIL
022 |a 2073-4395 
024 7 |a 10.3390/agronomy15081984  |2 doi 
035 |a 3243968678 
045 2 |b d20250101  |b d20251231 
084 |a 231332  |2 nlm 
100 1 |a Yang, Tianyi  |u Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China 
245 1 |a Evapotranspiration Differences, Driving Factors, and Numerical Simulation of Typical Irrigated Wheat Fields in Northwest China 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Wheat is a staple crop widely sown in Northwest China, and understanding and modelling evapotranspiration (ET) during the wheat-growing stage is important for irrigation scheduling and the efficient use of agricultural water resources. In this study, a four-year observation was conducted on a spring wheat field with border irrigation (BI) treatment and drip irrigation (DI) treatment, based on two Bowen ratio energy balance (BREB) systems. The results showed that the average ET across the whole growing stage scale was 512.0 mm for the BI treatment and 446.9 mm for the DI treatment, and the DI treatment reduced ET by 65.1 mm across the growing stage scale. The driving factors of the changes in ET in the two treatments were investigated using partial correlation analysis after understanding the changing pattern of ET. Net radiation (Rn), soil water content (SWC), and leaf area index (LAI) were the main meteorological, soil, and crop factors leading to the changes in ET in the two treatments. In terms of ET simulation, the SWAP model and different types of machine learning algorithms were used in this study to numerically simulate ET at a daily scale. The total ET values simulated by the SWAP model at the interannual scale were 11.0–14.2% lower than the observed values of ET, and the simulation accuracy varied at different growing stages. In terms of the machine learning simulation of ET, this study is the first to apply five machine learning algorithms to simulate a typical irrigated wheat field in the arid region of Northwest China. It was found that the Stacking algorithm as well as the SWAP model had the optimal simulation among all machine learning algorithms. These findings can provide a scientific basis for irrigation management and the efficient use of agricultural water resources in spring wheat fields in arid regions. 
651 4 |a China 
653 |a Energy balance 
653 |a Irrigation scheduling 
653 |a Border irrigation 
653 |a Net radiation 
653 |a Correlation analysis 
653 |a Soil water 
653 |a Evapotranspiration 
653 |a Crops 
653 |a Machine learning 
653 |a Moisture content 
653 |a Leaf area index 
653 |a Computer simulation 
653 |a Spring wheat 
653 |a Water resources 
653 |a Simulation 
653 |a Precipitation 
653 |a Water management 
653 |a Algorithms 
653 |a Arid regions 
653 |a Water content 
653 |a Agricultural resources 
653 |a Wheat 
653 |a Accuracy 
653 |a Leaf area 
653 |a Irrigation 
653 |a Arid zones 
653 |a Corn 
653 |a Hydrology 
653 |a Learning algorithms 
653 |a Soil sciences 
653 |a Bowen ratio 
653 |a Irrigation efficiency 
653 |a Hydrologic cycle 
653 |a Drip irrigation 
653 |a Mathematical models 
700 1 |a Chen Haochong  |u Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China 
700 1 |a Yu Haichao  |u Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China 
700 1 |a Liao Zhenqi  |u Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest A&F University, Xianyang 712100, China 
700 1 |a Yang, Danni  |u Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China 
700 1 |a Li, Sien  |u Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China 
773 0 |t Agronomy  |g vol. 15, no. 8 (2025), p. 1984-2013 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243968678/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243968678/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243968678/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch