Analytical Approximations as Close as Desired to Special Functions

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Axioms vol. 14, no. 8 (2025), p. 566-581
Үндсэн зохиолч: Aviv, Orly
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3243980965
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14080566  |2 doi 
035 |a 3243980965 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Aviv, Orly 
245 1 |a Analytical Approximations as Close as Desired to Special Functions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a We introduce a modern methodology for constructing global analytical approximations of special functions over their entire domains. By integrating the traditional method of matching asymptotic expansions—enhanced with Padé approximants—with differential evolution optimization, a modern machine learning technique, we achieve high-accuracy approximations using elegantly simple expressions. This method transforms non-elementary functions, which lack closed-form expressions and are often defined by integrals or infinite series, into simple analytical forms. This transformation enables deeper qualitative analysis and offers an efficient alternative to existing computational techniques. We demonstrate the effectiveness of our method by deriving an analytical expression for the Fermi gas pressure that has not been previously reported. Additionally, we apply our approach to the one-loop correction in thermal field theory, the synchrotron functions, common Fermi–Dirac integrals, and the error function, showcasing superior range and accuracy over prior studies. 
653 |a Fermi gases 
653 |a Computational mathematics 
653 |a Qualitative analysis 
653 |a Accuracy 
653 |a Evolutionary computation 
653 |a Embedded systems 
653 |a Physics 
653 |a Asymptotic methods 
653 |a Mathematical analysis 
653 |a Infinite series 
653 |a Asymptotic series 
653 |a Neural networks 
653 |a Pade approximation 
653 |a Error functions 
653 |a Gas pressure 
653 |a Approximation 
653 |a Methods 
653 |a Field theory 
653 |a Machine learning 
653 |a Integrals 
773 0 |t Axioms  |g vol. 14, no. 8 (2025), p. 566-581 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243980965/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243980965/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243980965/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch