Order Allocation Strategy Optimization in a Goods-to-Person Robotic Mobile Fulfillment System with Multiple Picking Stations

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Applied Sciences vol. 15, no. 16 (2025), p. 9173-9202
मुख्य लेखक: Zhao Junpeng
अन्य लेखक: Chu, Zhang
प्रकाशित:
MDPI AG
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3243982224
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15169173  |2 doi 
035 |a 3243982224 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Zhao Junpeng  |u School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; zhaojunpeng@buaa.edu.cn 
245 1 |a Order Allocation Strategy Optimization in a Goods-to-Person Robotic Mobile Fulfillment System with Multiple Picking Stations 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The order picking process in Goods-to-Person (G2P) systems involves a set of interdependent yet often separately addressed decisions, such as order allocation, sequencing, and rack handling. This study focuses on the joint optimization of order allocation, order sequencing, rack selection, and rack sequencing in a G2P robotic mobile fulfillment system with multiple picking stations. To model this complex problem, we develop a mathematical formulation and propose a two-phase heuristic algorithm that combines simulated annealing, genetic algorithms, and beam search for efficient solution. In addition, we explore and compare two order allocation strategies—order similarity and order association—across a range of operational scenarios. Extensive computational experiments and sensitivity analyses demonstrate the effectiveness of the proposed approach and provide insights into how strategic order allocation can significantly improve picking efficiency. Computational experiments on small-scale instances show that our algorithm achieves near-optimal solutions with up to 93.3% reduction in computation time compared to exact optimization for small cases. In large-scale scenarios, the order similarity strategy reduces rack movements by up to 44.8% and the order association strategy by up to 33.5% relative to a first-come, first-served baseline. Sensitivity analysis reveals that the association strategy performs best with fewer picking stations and lower rack capacity, whereas the similarity strategy is superior in systems with more stations or higher rack capacity. The findings offer practical guidance for the design and operation of intelligent warehousing systems. 
653 |a Turnover 
653 |a Integer programming 
653 |a Order picking 
653 |a Mathematical models 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Decision making 
653 |a Robots 
653 |a Design 
653 |a Electronic commerce 
653 |a Inventory control 
653 |a Automation 
653 |a Logistics 
653 |a Strategic planning 
653 |a Performance evaluation 
653 |a Heuristic 
653 |a Workloads 
653 |a Inventory management 
653 |a Inventory 
653 |a Efficiency 
653 |a Order processing 
653 |a Robotics 
700 1 |a Chu, Zhang  |u School of Economics and Management, Beihang University, Beijing 100191, China 
773 0 |t Applied Sciences  |g vol. 15, no. 16 (2025), p. 9173-9202 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243982224/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243982224/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243982224/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch