Integrating Hybrid AI Approaches for Enhanced Translation in Minority Languages

Na minha lista:
Detalhes bibliográficos
Publicado no:Applied Sciences vol. 15, no. 16 (2025), p. 9039-9055
Autor principal: Chen-Chi, Chang
Outros Autores: Yu-Hsun, Lin, Yun-Hsiang, Hsu, I-Hsin, Fan
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3243982299
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15169039  |2 doi 
035 |a 3243982299 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Chen-Chi, Chang  |u Department of Culture Creativity and Digital Marketing, College of Hakka Studies, National United University, Miaoli 36063, Taiwan; kiwi@gm.nuu.edu.tw (C.-C.C.); yuripeyamashita@nuu.edu.tw (Y.-H.H.) 
245 1 |a Integrating Hybrid AI Approaches for Enhanced Translation in Minority Languages 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The proposed hybrid AI-driven translation system’s architecture integrates phrase-based machine translation (PBMT) and neural machine translation (NMT) within a recursive learning framework. It provides a blueprint for institutions that digitize, translate, or teach under-resourced languages. Due to its ability to adapt to multilingual inputs and preserve cultural expressions, it is highly suitable for applications in education, community media, cultural preservation, and government-supported language revitalization initiatives. This study presents a hybrid artificial intelligence model designed to enhance translation quality for low-resource languages, specifically targeting the Hakka language. The proposed model integrates phrase-based machine translation (PBMT) and neural machine translation (NMT) within a recursive learning framework. The methodology consists of three key stages: (1) initial translation using PBMT, where Hakka corpus data is structured into a parallel dataset; (2) NMT training with Transformers, leveraging the generated parallel corpus to train deep learning models; and (3) recursive translation refinement, where iterative translations further enhance model accuracy by expanding the training dataset. This study employs preprocessing techniques to clean and optimize the dataset, reducing noise and improving sentence segmentation. A BLEU score evaluation is conducted to compare the effectiveness of PBMT and NMT across various corpus sizes, demonstrating that while PBMT performs well with limited data, the Transformer-based NMT achieves superior results as training data increases. The findings highlight the advantages of a hybrid approach in overcoming data scarcity challenges for minority languages. This research contributes to machine translation methodologies by proposing a scalable framework for improving linguistic accessibility in under-resourced languages. 
653 |a Language 
653 |a Language revitalization 
653 |a Hakka Chinese 
653 |a Grammatical aspect 
653 |a Artificial intelligence 
653 |a Recursion 
653 |a Deep learning 
653 |a Minority languages 
653 |a Communication 
653 |a Minority & ethnic groups 
653 |a Parallel corpora 
653 |a Corpus linguistics 
653 |a Machine translation 
653 |a Neural networks 
653 |a Linguistics 
653 |a Natural language processing 
653 |a Literature reviews 
653 |a Multiculturalism & pluralism 
653 |a Segmentation 
653 |a Dialects 
653 |a Translation methods and strategies 
653 |a Cultural heritage 
653 |a Training 
653 |a Scarcity 
653 |a Cultural maintenance 
653 |a Access 
653 |a Learning 
653 |a Data 
653 |a Frame analysis 
653 |a Languages 
653 |a Preservation 
653 |a Translation 
653 |a Public policy 
700 1 |a Yu-Hsun, Lin  |u Department of Business and Management, College of Management and Design, Ming Chi University of Technology, New Taipei 243303, Taiwan 
700 1 |a Yun-Hsiang, Hsu  |u Department of Culture Creativity and Digital Marketing, College of Hakka Studies, National United University, Miaoli 36063, Taiwan; kiwi@gm.nuu.edu.tw (C.-C.C.); yuripeyamashita@nuu.edu.tw (Y.-H.H.) 
700 1 |a I-Hsin, Fan  |u Department of Cultural Tourism, College of Hakka Studies, National United University, Miaoli 36063, Taiwan; magfan@gm.nuu.edu.tw 
773 0 |t Applied Sciences  |g vol. 15, no. 16 (2025), p. 9039-9055 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243982299/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243982299/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243982299/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch