Developing a CeS2/ZnS Quantum Dot Composite Nanomaterial as a High-Performance Cathode Material for Supercapacitor

Guardat en:
Dades bibliogràfiques
Publicat a:Batteries vol. 11, no. 8 (2025), p. 289-305
Autor principal: Shan-Diao, Xu
Altres autors: Li-Cheng, Wu, Muhammad, Adil, Lin-Feng, Sheng, Zi-Yue, Zhao, Xu, Kui, Chen, Xin
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3243982819
003 UK-CbPIL
022 |a 2313-0105 
024 7 |a 10.3390/batteries11080289  |2 doi 
035 |a 3243982819 
045 2 |b d20250101  |b d20251231 
100 1 |a Shan-Diao, Xu 
245 1 |a Developing a CeS<sub>2</sub>/ZnS Quantum Dot Composite Nanomaterial as a High-Performance Cathode Material for Supercapacitor 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) showed that ZnS QD nanoparticles were uniformly composited with CeS2, effectively increasing the active sites surface area and shortening the ion diffusion path. Electrochemical tests show that the specific capacitance of this composite material reaches 2054 F/g at a current density of 1 A/g (specific capacity of about 256 mAh/g), significantly outperforming the specific capacitance of pure CeS2 787 F/g at 1 A/g (specific capacity 98 mAh/g). The asymmetric supercapacitor (ASC) assembled with CeS2/ZnS QD and activated carbon (AC) retained 84% capacitance after 10,000 charge–discharge cycles. Benefited from the synergistic effect between CeS2 and ZnS QDs, the significantly improved electrochemical performance of the composite material suggests a promising strategy for designing rare-earth and QD-based advanced energy storage materials. 
610 4 |a Hitachi Ltd 
651 4 |a Shanghai China 
651 4 |a China 
651 4 |a Japan 
653 |a Nitrates 
653 |a Electrodes 
653 |a Nanocomposites 
653 |a Zinc 
653 |a Electrode materials 
653 |a Nanoparticles 
653 |a Ratios 
653 |a Rare earth elements 
653 |a Capacitance 
653 |a Energy storage 
653 |a Activated carbon 
653 |a Composite materials 
653 |a Scanning electron microscopy 
653 |a Cerium 
653 |a Ion diffusion 
653 |a Zinc sulfide 
653 |a Carbon black 
653 |a Electrolytes 
653 |a Electrochemical analysis 
653 |a Electron microscopy 
653 |a Alternative energy 
653 |a Supercapacitors 
653 |a Synergistic effect 
653 |a Stainless steel 
653 |a Quantum dots 
653 |a Glutathione 
653 |a Morphology 
653 |a Nanomaterials 
700 1 |a Li-Cheng, Wu 
700 1 |a Muhammad, Adil 
700 1 |a Lin-Feng, Sheng 
700 1 |a Zi-Yue, Zhao 
700 1 |a Xu, Kui 
700 1 |a Chen, Xin 
773 0 |t Batteries  |g vol. 11, no. 8 (2025), p. 289-305 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243982819/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243982819/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243982819/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch