Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects

Сохранить в:
Библиографические подробности
Опубликовано в::Biosensors vol. 15, no. 8 (2025), p. 474-508
Главный автор: Abdelhamid Mohamed A. A.
Другие авторы: Mi-Ran, Ki, Yoon, Hyo Jik, Pack, Seung Pil
Опубликовано:
MDPI AG
Предметы:
Online-ссылка:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3243985486
003 UK-CbPIL
022 |a 2079-6374 
024 7 |a 10.3390/bios15080474  |2 doi 
035 |a 3243985486 
045 2 |b d20250101  |b d20251231 
084 |a 231435  |2 nlm 
100 1 |a Abdelhamid Mohamed A. A.  |u Faculty of Education and Arts, Sohar University, Sohar 311, Oman; mabdelhamid@su.edu.om 
245 1 |a Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. 
653 |a Pesticides 
653 |a Environmental monitoring 
653 |a Biodegradation 
653 |a Technological change 
653 |a Nanoparticles 
653 |a Biosensors 
653 |a Contaminants 
653 |a Nanomaterials 
653 |a Chromatography 
653 |a Lab-on-a-chip 
653 |a Machine learning 
653 |a Graphene 
653 |a Pollution detection 
653 |a Innovations 
653 |a Signal processing 
653 |a Pollution monitoring 
653 |a Nanotechnology 
653 |a Data analysis 
653 |a Micropollutants 
653 |a Lasers 
653 |a Multiplexing 
653 |a Aptamers 
653 |a Artificial intelligence 
653 |a Heavy metals 
653 |a Anomalies 
653 |a Public health 
653 |a Real time 
653 |a Pollution 
653 |a Biocompatibility 
653 |a Perfluoroalkyl & polyfluoroalkyl substances 
653 |a Laboratories 
653 |a Ecosystems 
653 |a Imprinted polymers 
653 |a Polymers 
653 |a Reagents 
653 |a Microfluidics 
653 |a Fabrication 
653 |a Smartphones 
653 |a Costs 
653 |a Microplastics 
653 |a Sensors 
653 |a Consumer products 
653 |a 3-D printers 
653 |a Ablation 
653 |a Perfluorochemicals 
653 |a Environmental 
700 1 |a Mi-Ran, Ki  |u Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; allheart@korea.ac.kr 
700 1 |a Yoon, Hyo Jik  |u Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; hyojik88@korea.ac.kr 
700 1 |a Pack, Seung Pil  |u Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; allheart@korea.ac.kr 
773 0 |t Biosensors  |g vol. 15, no. 8 (2025), p. 474-508 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243985486/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243985486/fulltextwithgraphics/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243985486/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch