Development of an Optimization Algorithm for Designing Low-Carbon Concrete Materials Standardization with Blockchain Technology and Ensemble Machine Learning Methods

Guardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 16 (2025), p. 2809-2830
Autor principal: Ebenezer, Nwetlawung Zilefac
Otros Autores: Yi-Hsin, Lin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3243994111
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15162809  |2 doi 
035 |a 3243994111 
045 2 |b d20250815  |b d20250831 
084 |a 231437  |2 nlm 
100 1 |a Ebenezer, Nwetlawung Zilefac 
245 1 |a Development of an Optimization Algorithm for Designing Low-Carbon Concrete Materials Standardization with Blockchain Technology and Ensemble Machine Learning Methods 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study presents SmartMix Web3, a framework combining ensemble machine learning and blockchain technology to optimize low-carbon concrete design. It addresses two key challenges: (1) the limitations of conventional models in predicting concrete performance, and (2) ensuring data reliability and overcoming collaboration issues in AI-driven sustainable construction. Validated with 61 real-world experiments in Cameroon and 752 mix designs, the framework shows major improvements in predictive accuracy and decentralized trust. To address the first research question, a stacked ensemble model comprising Extreme Gradient Boosting (XGBoost)–Random Forest and a Convolutional Neural Network (CNN) was developed, achieving a 22% reduction in Root Mean Square Error (RMSE) for compressive strength prediction and embodied carbon estimation compared to traditional methods. The 29% reduction in Mean Absolute Error (MAE) results confirms the superiority of Extreme Learning Machine (EML) in low-carbon concrete performance prediction. For the second research question, SmartMix Web3 employs blockchain to ensure tamper-proof traceability and promote collaboration. Deployed on Ethereum, it automates verification of tokenized Environmental Product Declarations via smart contracts, reducing disputes and preserving data integrity. Federated learning supports decentralized training across nine batching plants, with Secure Hash Algorithm (SHA)-256 checks ensuring privacy. Field implementation in Cameroon yielded annual cost savings of FCFA 24.3 million and a 99.87 kgCO2/m3 reduction per mix design. By uniting EML precision with blockchain transparency, SmartMix Web3 offers practical and scalable benefits for sustainable construction in developing economies. 
653 |a Green development 
653 |a Carbon content 
653 |a Accuracy 
653 |a Datasets 
653 |a Collaboration 
653 |a Deep learning 
653 |a Performance prediction 
653 |a Algorithms 
653 |a Artificial neural networks 
653 |a Blockchain 
653 |a Construction contracts 
653 |a Machine learning 
653 |a Carbon 
653 |a Learning algorithms 
653 |a Viscosity 
653 |a Artificial intelligence 
653 |a Concrete curing 
653 |a Root-mean-square errors 
653 |a Genetic algorithms 
653 |a Neural networks 
653 |a Sustainability 
653 |a Variables 
653 |a Construction industry 
653 |a Cement 
653 |a Federated learning 
653 |a Design optimization 
653 |a Optimization algorithms 
653 |a Compressive strength 
700 1 |a Yi-Hsin, Lin 
773 0 |t Buildings  |g vol. 15, no. 16 (2025), p. 2809-2830 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243994111/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243994111/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243994111/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch