Geometric Optimization and Structural Analysis of Cable-Braced Gridshells on Freeform Surfaces

Guardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 16 (2025), p. 2816-2833
Autor principal: Li Xinye
Otros Autores: Zhang, Qilin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3243994208
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15162816  |2 doi 
035 |a 3243994208 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Li Xinye 
245 1 |a Geometric Optimization and Structural Analysis of Cable-Braced Gridshells on Freeform Surfaces 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In freeform surface grid structures, quadrilateral meshes offer high visual transparency and simple joint connections, but their structural stability is relatively limited. To enhance stability, designers often introduce additional structural elements along the diagonals of the quadrilateral mesh, forming double-layer quadrilateral grid systems such as cable-braced gridshells. However, current design methodologies do not support the simultaneous optimization of both layers. As a result, the two layers are often designed independently in practical applications, leading to complex joint detailing that compromises construction efficiency, architectural aesthetics, and overall structural performance. To address these challenges, this study presents a weighted multi-objective geometry optimization framework based on a Guided-Projection algorithm. The proposed method integrates half-edge data structure and multiple geometric and structural constraints, enabling the simultaneous optimization of quadrilateral mesh planarity (i.e., panels lying on flat planes) and the orthogonality (i.e., angles approaching 90°) of diagonal cable layouts. Through multiple case studies, the method demonstrates significant improvements in panel planarity and cable orthogonality. The results also highlight the algorithm’s rapid convergence and high computational efficiency. Finite element analysis further validates the structural benefits of the optimized configurations, including reduced peak axial forces in cables, more uniform cable force distribution, and enhanced overall stiffness and buckling resistance. In conclusion, the method improves structural stability, constructability, and design efficiency, offering a practical tool for optimizing freeform cable-braced gridshells. 
651 4 |a Germany 
651 4 |a China 
653 |a Load 
653 |a Finite element method 
653 |a Algorithms 
653 |a Structural analysis 
653 |a Efficiency 
653 |a Layouts 
653 |a Architecture 
653 |a Multiple objective analysis 
653 |a Design optimization 
653 |a Construction 
653 |a Cables 
653 |a Quadrilaterals 
653 |a Surface geometry 
653 |a Axial forces 
653 |a Data structures 
653 |a Optimization 
653 |a Force distribution 
653 |a Structural members 
653 |a Optimization algorithms 
653 |a Geometry 
653 |a Orthogonality 
653 |a Structural stability 
700 1 |a Zhang, Qilin 
773 0 |t Buildings  |g vol. 15, no. 16 (2025), p. 2816-2833 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243994208/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3243994208/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243994208/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch