Sentiment-Driven Statistical Modelling of Stock Returns over Weekends

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Computation vol. 13, no. 8 (2025), p. 201-237
Kaituhi matua: Kowalski, Kutz Pablo
Ētahi atu kaituhi: Makarov, Roman N
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3244001119
003 UK-CbPIL
022 |a 2079-3197 
024 7 |a 10.3390/computation13080201  |2 doi 
035 |a 3244001119 
045 2 |b d20250801  |b d20250831 
084 |a 231446  |2 nlm 
100 1 |a Kowalski, Kutz Pablo 
245 1 |a Sentiment-Driven Statistical Modelling of Stock Returns over Weekends 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a We propose a two-stage statistical learning framework to investigate how financial news headlines posted over weekends affect stock returns. In the first stage, Natural Language Processing (NLP) techniques are used to extract sentiment features from news headlines, including FinBERT sentiment scores and Impact Probabilities derived from Logistic Regression models (Binomial, Multinomial, and Bayesian). These Impact Probabilities estimate the likelihood that a given headline influences the stock’s opening price on the following trading day. In the second stage, we predict over-weekend log returns using various sets of covariates: sentiment-based features, traditional financial indicators (e.g., trading volumes, past returns), and headline counts. We evaluate multiple statistical learning algorithms—including Linear Regression, Polynomial Regression, Random Forests, and Support Vector Machines—using cross-validation and two performance metrics. Our framework is demonstrated using financial news from MarketWatch and stock data for Apple Inc. (AAPL) from 2014 to 2023. The results show that incorporating sentiment features, particularly Impact Probabilities, improves predictive accuracy. This approach offers a robust way to quantify and model the influence of qualitative financial information on stock performance, especially in contexts where markets are closed but news continues to develop. 
610 4 |a Apple Inc 
653 |a Language 
653 |a Dictionaries 
653 |a Hypothesis testing 
653 |a Regression analysis 
653 |a Regression models 
653 |a Polynomials 
653 |a News 
653 |a Prices 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Influence 
653 |a Internet stocks 
653 |a Rates of return 
653 |a Investor behavior 
653 |a Performance measurement 
653 |a Sentiment analysis 
653 |a Support vector machines 
653 |a Hypotheses 
653 |a Product reviews 
653 |a Volatility 
653 |a Pessimism 
653 |a Natural language processing 
653 |a Algorithms 
653 |a Statistical models 
653 |a Large language models 
700 1 |a Makarov, Roman N 
773 0 |t Computation  |g vol. 13, no. 8 (2025), p. 201-237 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244001119/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244001119/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244001119/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch