Ontology-Based Data Pipeline for Semantic Reaction Classification and Research Data Management

Salvato in:
Dettagli Bibliografici
Pubblicato in:Computers vol. 14, no. 8 (2025), p. 311-326
Autore principale: Borgelt Hendrik
Altri autori: Kitel, Frederick Gabriel, Kockmann Norbert
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3244001607
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14080311  |2 doi 
035 |a 3244001607 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Borgelt Hendrik 
245 1 |a Ontology-Based Data Pipeline for Semantic Reaction Classification and Research Data Management 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Catalysis research is complex and interdisciplinary, involving diverse physical effects and challenging data practices. Research data often captures only selected aspects, such as specific reactants and products, limiting its utility for machine learning and the implementation of FAIR (Findable, Accessible, Interoperable, Reusable) workflows. To improve this, semantic structuring through ontologies is essential. This work extends the established ontologies by refining logical relations and integrating semantic tools such as the Web Ontology Language or the Shape Constraint Language. It incorporates application programming interfaces from chemical databases, such as the Kyoto Encyclopedia of Genes and Genomes and the National Institute of Health’s PubChem database, and builds upon established ontologies. A key innovation lies in automatically decomposing chemical substances through database entries and chemical identifier representations to identify functional groups, enabling more generalized reaction classification. Using new semantic functionality, functional groups are flexibly addressed, improving the classification of reactions such as saponification and ester cleavage with simultaneous oxidation. A graphical interface (GUI) supports user interaction with the knowledge graph, enabling ontological reasoning and querying. This approach demonstrates improved specificity of the newly established ontology over its predecessors and offers a more user-friendly interface for engaging with structured chemical knowledge. Future work will focus on expanding ontology coverage to support a wider range of reactions in catalysis research. 
653 |a Research data management 
653 |a Data management 
653 |a Terminology 
653 |a Semantics 
653 |a Metadata 
653 |a Application programming interface 
653 |a Classification 
653 |a Ontology 
653 |a Databases 
653 |a Experiments 
653 |a Knowledge 
653 |a Chemical reactions 
653 |a Oxidation 
653 |a Catalysis 
653 |a Functional groups 
653 |a Machine learning 
653 |a Knowledge representation 
700 1 |a Kitel, Frederick Gabriel 
700 1 |a Kockmann Norbert 
773 0 |t Computers  |g vol. 14, no. 8 (2025), p. 311-326 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244001607/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244001607/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244001607/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch