Research on Scheduling Return Communication Tasks for UAV Swarms in Disaster Relief Scenarios

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Drones vol. 9, no. 8 (2025), p. 567-599
Prif Awdur: Tang Zhangquan
Awduron Eraill: Jiao Yuanyuan, Wang, Xiao, Pan Xiaogang, Peng Jiawu
Cyhoeddwyd:
MDPI AG
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3244009750
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9080567  |2 doi 
035 |a 3244009750 
045 2 |b d20250101  |b d20251231 
100 1 |a Tang Zhangquan 
245 1 |a Research on Scheduling Return Communication Tasks for UAV Swarms in Disaster Relief Scenarios 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study investigates the scheduling problem of return communication tasks for unmanned aerial vehicle (UAV) swarms, where disaster relief environmental global positioning is hampered. To characterize the utility of these tasks and optimize scheduling decisions, we developed a time window-constrained scheduling model that operates under constraints, including communication base station time windows, battery levels, and task uniqueness. To solve the above model, we propose an enhanced algorithm through integrating Dueling Deep Q-Network (Dueling DQN) into adaptive large neighborhood search (ALNS), referred to as Dueling DQN-ALNS. The Dueling DQN component develops a method to update strategy weights, while the action space defines the destruction and selection strategies for the ALNS scheduling solution across different time windows. Meanwhile, we design a two-stage algorithm framework consisting of centralized offline training and decentralized online scheduling. Compared to traditionally optimized search algorithms, the proposed algorithm could continuously and dynamically interact with the environment to acquire state information about the scheduling solution. The solution ability of Dueling DQN is 3.75% higher than that of the Ant Colony Optimization (ACO) algorithm, 5.9% higher than that of the basic ALNS algorithm, and 9.37% higher than that of the differential evolution algorithm (DE). This verified its efficiency and advantages in the scheduling problem of return communication tasks for UAVs. 
653 |a Mathematical programming 
653 |a Scheduling 
653 |a Evolutionary computation 
653 |a Deep learning 
653 |a Collaboration 
653 |a Disaster relief 
653 |a Emergency preparedness 
653 |a Communication 
653 |a Unmanned aerial vehicles 
653 |a Genetic algorithms 
653 |a Search algorithms 
653 |a Methods 
653 |a Computer aided scheduling 
653 |a Windows (intervals) 
653 |a Ant colony optimization 
653 |a Heuristic 
653 |a Neighborhoods 
653 |a Optimization algorithms 
653 |a Evolutionary algorithms 
700 1 |a Jiao Yuanyuan 
700 1 |a Wang, Xiao 
700 1 |a Pan Xiaogang 
700 1 |a Peng Jiawu 
773 0 |t Drones  |g vol. 9, no. 8 (2025), p. 567-599 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244009750/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244009750/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244009750/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch