Dependent Task Graph Offloading Model Based on Deep Reinforcement Learning in Mobile Edge Computing

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Electronics vol. 14, no. 16 (2025), p. 3184-3208
Kaituhi matua: Guo Ruxin
Ētahi atu kaituhi: Zhou Lunyu, Li Linzhi, Song, Yuhui, Xie Xiaolan
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3244012072
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14163184  |2 doi 
035 |a 3244012072 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Guo Ruxin  |u School of Computer Science and Engineering, Guilin University of Technology, Guilin 541006, China; 17737798424@163.com (R.G.); 17776085146@163.com (L.Z.); 1020231176@glut.edu.com (L.L.) 
245 1 |a Dependent Task Graph Offloading Model Based on Deep Reinforcement Learning in Mobile Edge Computing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Mobile edge computing (MEC) has emerged as a promising solution for enabling resource-constrained user devices to run large-scale and complex applications by offloading their computational tasks to the edge servers. One of the most critical challenges in MEC is designing efficient task offloading strategies. Traditional approaches either rely on non-intelligent algorithms that lack adaptability to the dynamic edge environment, or utilize learning-based methods that often ignore task dependencies within applications. To address this issue, this study investigates task offloading for mobile applications with interdependent tasks in an MEC system, employing a deep reinforcement learning framework. Specifically, we model task dependencies using a Directed Acyclic Graph (DAG), where nodes represent subtasks and directed edges indicate their dependency relationships. Based on task priorities, the DAG is transformed into a topological sequence of task vectors. We propose a novel graph-based offloading model, which combines an attention-based network and a Proximal Policy Optimization (PPO) algorithm to learn optimal offloading decisions. Our method leverages offline reinforcement learning through the attention network to capture intrinsic task dependencies within applications. Experimental results show that our proposed model exhibits strong decision-making capabilities and outperforms existing baseline algorithms. 
653 |a Scheduling 
653 |a Integer programming 
653 |a Deep learning 
653 |a Edge computing 
653 |a Applications programs 
653 |a Graph theory 
653 |a Optimization techniques 
653 |a Decision making 
653 |a Neural networks 
653 |a Task complexity 
653 |a Optimization 
653 |a Mobile computing 
653 |a Computation offloading 
653 |a Attention 
653 |a Algorithms 
653 |a Methods 
653 |a Performance evaluation 
653 |a Heuristic 
653 |a Workloads 
653 |a Energy consumption 
653 |a Markov analysis 
700 1 |a Zhou Lunyu  |u School of Computer Science and Engineering, Guilin University of Technology, Guilin 541006, China; 17737798424@163.com (R.G.); 17776085146@163.com (L.Z.); 1020231176@glut.edu.com (L.L.) 
700 1 |a Li Linzhi  |u School of Computer Science and Engineering, Guilin University of Technology, Guilin 541006, China; 17737798424@163.com (R.G.); 17776085146@163.com (L.Z.); 1020231176@glut.edu.com (L.L.) 
700 1 |a Song, Yuhui  |u School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China 
700 1 |a Xie Xiaolan  |u School of Computer Science and Engineering, Guilin University of Technology, Guilin 541006, China; 17737798424@163.com (R.G.); 17776085146@163.com (L.Z.); 1020231176@glut.edu.com (L.L.) 
773 0 |t Electronics  |g vol. 14, no. 16 (2025), p. 3184-3208 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244012072/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244012072/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244012072/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch