Energy Management of Hybrid Electric Commercial Vehicles Based on Neural Network-Optimized Model Predictive Control

Gardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 16 (2025), p. 3176-3202
Autor Principal: Hong Jinlong
Outros autores: Yang, Fan, Luo Xi, Xiaoxiang, Na, Chu Hongqing, Tian Mengjian
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244012081
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14163176  |2 doi 
035 |a 3244012081 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Hong Jinlong  |u School of Automotive Studies, Tongji University, Shanghai 201804, China; hongjl@tongji.edu.cn (J.H.); yolo_yf@tongji.edu.cn (F.Y.); luoxi21@tongji.edu.cn (X.L.); chuhongqing@tongji.edu.cn (H.C.) 
245 1 |a Energy Management of Hybrid Electric Commercial Vehicles Based on Neural Network-Optimized Model Predictive Control 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Energy management for hybrid electric commercial vehicles, involving continuous power output and discrete gear shifting, constitutes a typical mixed-integer programming (MIP) problem, presenting significant challenges for real-time performance and computational efficiency. To address this, this paper proposes a physics-informed neural network-optimized model predictive control (PINN-MPC) strategy. On one hand, this strategy simultaneously optimizes continuous and discrete states within the MPC framework to achieve the integrated objectives of minimizing fuel consumption, tracking speed, and managing battery state-of-charge (SOC). On the other hand, to overcome the prohibitively long solving time of the MIP-MPC, a physics-informed neural network (PINN) optimizer is designed. This optimizer employs the soft-argmax function to handle discrete gear variables and embeds system dynamics constraints using an augmented Lagrangian approach. Validated via hardware-in-the-loop (HIL) testing under two distinct real-world driving cycles, the results demonstrate that, compared to the open-source solver BONMIN, PINN-MPC significantly reduces computation time—dramatically decreasing the average solving time from approximately 10 s to about 5 ms—without sacrificing the combined vehicle dynamic and economic performance. 
653 |a Energy management 
653 |a Simulation 
653 |a Commercial vehicles 
653 |a Linear programming 
653 |a Integer programming 
653 |a Control algorithms 
653 |a Collaboration 
653 |a Deep learning 
653 |a Dynamic programming 
653 |a Teaching methods 
653 |a Neural networks 
653 |a Electric vehicles 
653 |a Optimization 
653 |a Predictive control 
653 |a State of charge 
653 |a System dynamics 
653 |a Energy efficiency 
653 |a Mixed integer 
653 |a Real time 
653 |a Energy consumption 
700 1 |a Yang, Fan  |u School of Automotive Studies, Tongji University, Shanghai 201804, China; hongjl@tongji.edu.cn (J.H.); yolo_yf@tongji.edu.cn (F.Y.); luoxi21@tongji.edu.cn (X.L.); chuhongqing@tongji.edu.cn (H.C.) 
700 1 |a Luo Xi  |u School of Automotive Studies, Tongji University, Shanghai 201804, China; hongjl@tongji.edu.cn (J.H.); yolo_yf@tongji.edu.cn (F.Y.); luoxi21@tongji.edu.cn (X.L.); chuhongqing@tongji.edu.cn (H.C.) 
700 1 |a Xiaoxiang, Na  |u Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK; xnhn2@cam.ac.uk 
700 1 |a Chu Hongqing  |u School of Automotive Studies, Tongji University, Shanghai 201804, China; hongjl@tongji.edu.cn (J.H.); yolo_yf@tongji.edu.cn (F.Y.); luoxi21@tongji.edu.cn (X.L.); chuhongqing@tongji.edu.cn (H.C.) 
700 1 |a Tian Mengjian  |u College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen 518118, China 
773 0 |t Electronics  |g vol. 14, no. 16 (2025), p. 3176-3202 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244012081/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244012081/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244012081/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch