Accelerating Broadband DOA Estimation: A Real-Valued and Coherent Sparse Bayesian Approach for 5G Sensing

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 16 (2025), p. 3174-3200
Autor principal: Tong, Xin
Otros Autores: Hu Yinzhe, Deng Zhongliang, Hu Enwen
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244012808
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14163174  |2 doi 
035 |a 3244012808 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Tong, Xin 
245 1 |a Accelerating Broadband DOA Estimation: A Real-Valued and Coherent Sparse Bayesian Approach for 5G Sensing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a For applications like smart cities and autonomous driving, high-precision direction-of-arrival (DOA) estimation for 5G broadband signals is essential. A primary obstacle for existing methods is the spatial incoherence caused by multi-frequency propagation. We present a sparse Bayesian learning (SBL) algorithm specifically designed to resolve this issue while also minimizing computational load. The algorithm synergistically combines three key components: first, a multiple-signal classification (MUSIC)-like focusing technique ensures a coherent sparse model; second, a real-valued transformation significantly cuts down on computational complexity; and third, an optimized variational Bayesian inference accelerates convergence via root-finding. Validation against MUSIC and rootSBL confirms our method’s marked superiority in low-SNR, limited-snapshot, and multipath conditions delivering both higher accuracy and faster convergence. This work, thus, contributes an effective and practical solution for real-time 5G DOA sensing. 
610 4 |a CNN 
653 |a Sparsity 
653 |a Propagation 
653 |a Accuracy 
653 |a Convergence 
653 |a Bayesian analysis 
653 |a Real time 
653 |a Neural networks 
653 |a Signal processing 
653 |a Signal classification 
653 |a Incoherence 
653 |a Broadband 
653 |a Unmanned aerial vehicles 
653 |a Algorithms 
653 |a Methods 
653 |a Direction of arrival 
653 |a Machine learning 
653 |a Statistical inference 
700 1 |a Hu Yinzhe 
700 1 |a Deng Zhongliang 
700 1 |a Hu Enwen 
773 0 |t Electronics  |g vol. 14, no. 16 (2025), p. 3174-3200 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244012808/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244012808/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244012808/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch