MAFUZZ: Adaptive Gradient-Guided Fuzz Testing for Satellite Internet Ground Terminals

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics vol. 14, no. 16 (2025), p. 3168-3189
1. Verfasser: Cao, Ang
Weitere Verfasser: Zhao, Yongli, Yan, Xiaodan, Wang, Wei, Yang, Jian, Zhang, Yuanjian, Liu, Ruiqi
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3244012931
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14163168  |2 doi 
035 |a 3244012931 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Cao, Ang 
245 1 |a MAFUZZ: Adaptive Gradient-Guided Fuzz Testing for Satellite Internet Ground Terminals 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the proliferation of satellite internet systems, such as Starlink and OneWeb, ground terminals have become critical for ensuring end-user connectivity. However, the security of Satellite Internet Ground Terminals (SIGTs) remains underexplored. These Linux-based embedded systems are vulnerable to advanced attacks due to limited source code access and immature protection mechanisms. This paper presents MAFUZZ, an adaptive fuzzing framework guided by neural network gradients to uncover hidden vulnerabilities in SIGT binaries. MAFUZZ uses a lightweight machine learning model to identify input bytes that influence program behavior and applies gradient-based mutation accordingly. It also integrates an adaptive Havoc mechanism to enhance path diversity. We compare MAFUZZ with NEUZZ, a neural fuzzing tool that uses program smoothing to guide mutation through a static model. Our experiments on real-world Linux binaries show that MAFUZZ improves path coverage by an average of 17.4% over NEUZZ, demonstrating its effectiveness in vulnerability discovery and its practical value for securing satellite terminal software. 
653 |a Software 
653 |a Source code 
653 |a Neural networks 
653 |a Microwave communications 
653 |a Internet access 
653 |a Internet 
653 |a Static models 
653 |a Linux 
653 |a Computer terminals 
653 |a Logic 
653 |a Firmware 
653 |a Design 
653 |a Malware 
653 |a Satellite constellations 
653 |a Automation 
653 |a Machine learning 
653 |a Mutation 
653 |a Satellites 
653 |a Internet of Things 
653 |a Interfaces 
653 |a Modems 
653 |a Software testing 
700 1 |a Zhao, Yongli 
700 1 |a Yan, Xiaodan 
700 1 |a Wang, Wei 
700 1 |a Yang, Jian 
700 1 |a Zhang, Yuanjian 
700 1 |a Liu, Ruiqi 
773 0 |t Electronics  |g vol. 14, no. 16 (2025), p. 3168-3189 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244012931/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244012931/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244012931/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch