Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Entropy vol. 27, no. 8 (2025), p. 803-824
Prif Awdur: Gao Haixiang
Cyhoeddwyd:
MDPI AG
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3244012956
003 UK-CbPIL
022 |a 1099-4300 
024 7 |a 10.3390/e27080803  |2 doi 
035 |a 3244012956 
045 2 |b d20250101  |b d20251231 
084 |a 231460  |2 nlm 
100 1 |a Gao Haixiang 
245 1 |a Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, UAVs and LEO satellites, traditional optimization methods encounter significant limitations due to non-convexity and the combinatorial explosion in possible solutions. A multi-agent deep deterministic policy gradient (MADDPG)-based optimization algorithm is proposed to address these challenges. This algorithm is designed to minimize the total system costs, balancing energy consumption and latency through partial task offloading within a cloud–edge-device collaborative mobile edge computing (MEC) system. A comprehensive system model is proposed, with the problem formulated as a partially observable Markov decision process (POMDP) that integrates association control, power control, computing resource allocation, and task distribution. Each M-IoT device and UAV acts as an intelligent agent, collaboratively learning the optimal offloading strategies through a centralized training and decentralized execution framework inherent in the MADDPG. The numerical simulations validate the effectiveness of the proposed MADDPG-based approach, which demonstrates rapid convergence and significantly outperforms baseline methods, and indicate that the proposed MADDPG-based algorithm reduces the total system cost by 15–60% specifically. 
653 |a Deep learning 
653 |a Intelligent agents 
653 |a Internet of Things 
653 |a Satellite communications 
653 |a Combinatorial analysis 
653 |a Power control 
653 |a Markov processes 
653 |a Optimization 
653 |a Edge computing 
653 |a Resource allocation 
653 |a Mobile computing 
653 |a Adaptation 
653 |a Decomposition 
653 |a Distance learning 
653 |a Energy consumption 
653 |a Low earth orbits 
653 |a Scheduling 
653 |a Energy costs 
653 |a Convexity 
653 |a Unmanned aerial vehicles 
653 |a Cloud computing 
653 |a Decision making 
653 |a Network latency 
653 |a Computation offloading 
653 |a Convex analysis 
653 |a Algorithms 
653 |a Energy efficiency 
653 |a Satellites 
653 |a Multiagent systems 
653 |a Cost control 
653 |a Resource management 
773 0 |t Entropy  |g vol. 27, no. 8 (2025), p. 803-824 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244012956/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244012956/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244012956/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch