Gas–Liquid Two-Phase Flow in a Hydraulic Braking Pipeline: Flow Pattern and Bubble Characteristics

Guardado en:
Bibliografiske detaljer
Udgivet i:Fluids vol. 10, no. 8 (2025), p. 196-219
Hovedforfatter: Li, Xiaolu
Andre forfattere: Yiyu, Ke, Xu Cangsu, Sun, Jia, Liang Mingxuan
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3244034976
003 UK-CbPIL
022 |a 2311-5521 
024 7 |a 10.3390/fluids10080196  |2 doi 
035 |a 3244034976 
045 2 |b d20250101  |b d20251231 
100 1 |a Li, Xiaolu  |u College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China 
245 1 |a Gas–Liquid Two-Phase Flow in a Hydraulic Braking Pipeline: Flow Pattern and Bubble Characteristics 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a An in-depth analysis of the two-phase flow in a hydraulic braking pipeline can reveal its evolution process pertinent for designing and maintaining the hydraulic system. In this study, a high-speed camera examined the two-phase flow pattern and bubble characteristics in a hydraulic braking pipeline. Bubble flow pattern recognition, bubble segmentation, and bubble tracking were performed to analyze the bubble movement, including its behavior, distribution, velocity, and acceleration. The results indicate that the gas–liquid two-phase flow patterns in the hydraulic braking pipeline include bubbly, slug, plug, annular, and transient flows. Experiments reveal that bubbly flow is the most frequent, followed by slug, plug, and transient flows. However, plug and transient flows are unstable, while annular flow occurs at a wheel speed of 200 r/min. Bubbles predominantly appear in the upper section of the pipeline. Furthermore, large bubbles travel faster than small bubbles, whereas slug flow bubbles exhibit higher velocities than those in plug or transient flows. 
651 4 |a Beijing China 
651 4 |a China 
653 |a Flow distribution 
653 |a Braking 
653 |a Annular flow 
653 |a Two phase flow 
653 |a Hydraulic equipment 
653 |a Heat 
653 |a Bubbles 
653 |a Visualization 
653 |a Pattern recognition 
653 |a Plugs 
653 |a Unsteady flow 
653 |a Flow pattern 
653 |a Velocity 
653 |a Cavitation 
653 |a Cameras 
653 |a Research methodology 
653 |a Viscosity 
653 |a Braking systems 
653 |a High speed cameras 
653 |a Sensors 
653 |a Power supply 
653 |a Algorithms 
653 |a Slug flow 
653 |a Multiphase flow 
653 |a Hydraulics 
700 1 |a Yiyu, Ke  |u College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China 
700 1 |a Xu Cangsu  |u School of New Energy and Intelligent Networked Automobile, University of Sanya, Sanya 572022, China 
700 1 |a Sun, Jia  |u College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China 
700 1 |a Liang Mingxuan  |u College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China 
773 0 |t Fluids  |g vol. 10, no. 8 (2025), p. 196-219 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244034976/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244034976/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244034976/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch