Least Squares Collocation for Estimating Terrestrial Water Storage Variations from GNSS Vertical Displacement on the Island of Haiti

Enregistré dans:
Détails bibliographiques
Publié dans:Geosciences vol. 15, no. 8 (2025), p. 322-340
Auteur principal: Sauveur Renaldo
Autres auteurs: Tabibi Sajad, Francis, Olivier
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3244039240
003 UK-CbPIL
022 |a 2076-3263 
024 7 |a 10.3390/geosciences15080322  |2 doi 
035 |a 3244039240 
045 2 |b d20250801  |b d20250831 
084 |a 231468  |2 nlm 
100 1 |a Sauveur Renaldo  |u Research Unit in Geosciences (URGeo), Faculty of Science, State University of Haiti, Port-au-Prince HT 6110, Haiti 
245 1 |a Least Squares Collocation for Estimating Terrestrial Water Storage Variations from GNSS Vertical Displacement on the Island of Haiti 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Water masses are continuously redistributing across the Earth, so accurately estimating their availability is essential. Global Navigation Satellite Systems (GNSSs) have demonstrated potential for observing vertical deformations, which is partly driven by terrestrial water storage (TWS) variations. This capability has been used in hydrogeodesy to estimate TWS variations. However, GNSS data inversions are often ill-posed, requiring regularization for stable solutions. This study considers the Least Squares Collocation (LSC) statistical method as an alternative. LSC uses covariance functions to characterize observations, parameters, and their interdependence. By incorporating additional physical information into inverse models, LSC allows ill-posed problems stabilization. To assess LSC effectiveness, we apply it to observed and simulated GNSS vertical displacement on Haiti island. Hydrological signals are modeled using Global Land Data Assimilation (GLDAS) data. In sparse GNSS data regions, findings indicate poor agreement between TWS and hydrological input, with a Root-Mean-Square-Error (RMSE) of 115 kg/m2, a correlation of 0.3, and a reduction of 73%. However, in dense simulated GNSS areas, TWS and hydrological input show strong agreement, with an RMSE of 41 kg/m2, a correlation of 0.83, and a reduction of 92%. The results confirm LSC potentiality for assessing TWS changes and improving water quantification in dense GNSS station region. 
651 4 |a Haiti 
653 |a Water storage 
653 |a Inversions 
653 |a Navigation 
653 |a Navigation satellites 
653 |a Hydrology 
653 |a Data assimilation 
653 |a Statistical methods 
653 |a Navigation systems 
653 |a Regularization 
653 |a Water masses 
653 |a Variation 
653 |a Root-mean-square errors 
653 |a Navigational satellites 
653 |a Ill posed problems 
653 |a Data collection 
653 |a Regularization methods 
653 |a Satellite observation 
653 |a Least squares 
653 |a Hydrologic models 
653 |a Satellites 
653 |a Collocation 
653 |a Global navigation satellite system 
700 1 |a Tabibi Sajad  |u Faculty of Science, Technology and Medicine, Belval Campus, University of Luxembourg, 4365 Luxembourg, Luxembourg; sajad.tabibi@uni.lu (S.T.); olivier.francis@uni.lu (O.F.) 
700 1 |a Francis, Olivier  |u Faculty of Science, Technology and Medicine, Belval Campus, University of Luxembourg, 4365 Luxembourg, Luxembourg; sajad.tabibi@uni.lu (S.T.); olivier.francis@uni.lu (O.F.) 
773 0 |t Geosciences  |g vol. 15, no. 8 (2025), p. 322-340 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244039240/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244039240/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244039240/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch