Field-Test-Driven Sensitivity Analysis and Model Updating of Aging Railroad Bridge Structures Using Genetic Algorithm Optimization Approach

Uloženo v:
Podrobná bibliografie
Vydáno v:Infrastructures vol. 10, no. 8 (2025), p. 195-216
Hlavní autor: Anand, Rahul
Další autoři: Tripathi Sachin, De Oliveira Celso Cruz, Malla, Ramesh B
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3244039956
003 UK-CbPIL
022 |a 2412-3811 
024 7 |a 10.3390/infrastructures10080195  |2 doi 
035 |a 3244039956 
045 2 |b d20250101  |b d20251231 
100 1 |a Anand, Rahul 
245 1 |a Field-Test-Driven Sensitivity Analysis and Model Updating of Aging Railroad Bridge Structures Using Genetic Algorithm Optimization Approach 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. An initial FE model of the bridge was created based on original drawings and field observations. Field testing using a laser Doppler vibrometer captured the bridge’s dynamic response (vibrations and deflections) under regular train traffic. Key structural parameters (material properties, section properties, support conditions) were identified and varied in a sensitivity analysis to determine their influence on model outputs. A hybrid sensitivity analysis combining log-normal sampling and a genetic algorithm (GA) was employed to explore the parameter space and calibrate the model. The GA optimization tuned the FE model parameters to minimize discrepancies between simulated results and field measurements, focusing on vertical deflections and natural frequencies. The updated FE model showed significantly improved agreement with observed behavior; for example, vertical deflections under a representative train were matched within a few percent, and natural frequencies were accurately reproduced. This validated model provides a more reliable tool for predicting structural performance and fatigue life under various loading scenarios. The results demonstrate that integrating field data, sensitivity analysis, and model updating can greatly enhance the accuracy of structural assessments for aging railroad bridges, supporting more informed maintenance and management decisions. 
610 4 |a Amtrak 
651 4 |a United States--US 
653 |a Load 
653 |a Finite element method 
653 |a Dynamic response 
653 |a Material properties 
653 |a Sensitivity analysis 
653 |a Railway bridges 
653 |a Calibration 
653 |a Laser doppler vibrometers 
653 |a Data processing 
653 |a Field study 
653 |a Corrosion 
653 |a Steel structures 
653 |a Parameter identification 
653 |a Genetic algorithms 
653 |a Bridge maintenance 
653 |a Lasers 
653 |a Digital twins 
653 |a Metal fatigue 
653 |a Piers 
653 |a Sensors 
653 |a Optimization 
653 |a Resonant frequencies 
653 |a Design 
653 |a Aging (metallurgy) 
653 |a Fatigue life 
653 |a Model updating 
700 1 |a Tripathi Sachin 
700 1 |a De Oliveira Celso Cruz 
700 1 |a Malla, Ramesh B 
773 0 |t Infrastructures  |g vol. 10, no. 8 (2025), p. 195-216 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244039956/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244039956/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244039956/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch