YOLO-PTHD: A UAV-Based Deep Learning Model for Detecting Visible Phenotypic Signs of Pine Decline Induced by the Invasive Woodwasp Sirex noctilio (Hymenoptera, Siricidae)

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Insects vol. 16, no. 8 (2025), p. 829-853
Hoofdauteur: Yang Wenshuo
Andere auteurs: Zhao Jiaqiang, Zhu Dexu, Wang Zhengtong, Song, Min, Chen, Tao, Liang, Te, Shi, Juan
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3244041250
003 UK-CbPIL
022 |a 2075-4450 
024 7 |a 10.3390/insects16080829  |2 doi 
035 |a 3244041250 
045 2 |b d20250801  |b d20250831 
084 |a 231475  |2 nlm 
100 1 |a Yang Wenshuo  |u Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China 
245 1 |a YOLO-PTHD: A UAV-Based Deep Learning Model for Detecting Visible Phenotypic Signs of Pine Decline Induced by the Invasive Woodwasp <i>Sirex noctilio</i> (Hymenoptera, Siricidae) 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Sirex noctilio is an invasive pest that contributes to pine tree decline, leading to visual symptoms such as needle discoloration, crown thinning, and eventual tree death. Detecting these visible phenotypic signs from drone imagery is challenging due to elongated or irregular crown shapes, weak color differences, and occlusion within dense forests. This study introduces YOLO-PTHD, a lightweight deep learning model designed for detecting visible signs of pine decline in UAV images. The model integrates three customized components: Strip-based convolution to capture elongated tree structures, Channel-Aware Attention to enhance weak visual cues, and a scale-sensitive dynamic loss function to improve detection of minority classes and small targets. A UAV-based dataset, the Sirex Woodwasp dataset, was constructed with annotated images of weakened, and dead pine trees. YOLO-PTHD achieved an mAP of 0.923 and an F1-score of 0.866 on this dataset. To evaluate the model’s generalization capability, it was further tested on the Real Pine Wilt Disease dataset from South Korea. Despite differences in tree symptoms and imaging conditions, the model maintained strong performance, demonstrating its robustness across different forest health scenarios. Field investigations targeting Sirex woodwasp in outbreak areas confirmed that the model could reliably detect damaged trees in real-world forest environments. This work demonstrates the potential of UAV-based visual analysis for large-scale phenotypic surveillance of pine health in forest management. 
651 4 |a China 
651 4 |a Heilongjiang China 
653 |a Forest management 
653 |a Invasive species 
653 |a Invasive insects 
653 |a Photography 
653 |a Signs and symptoms 
653 |a Damage detection 
653 |a Unmanned aerial vehicles 
653 |a Field investigations 
653 |a Insects 
653 |a Performance evaluation 
653 |a Forests 
653 |a Datasets 
653 |a Evergreen trees 
653 |a Pine needles 
653 |a Field tests 
653 |a Remote sensing 
653 |a Aerial surveys 
653 |a Classification 
653 |a Artificial intelligence 
653 |a Trees 
653 |a Algorithms 
653 |a Wilt 
653 |a Pine 
653 |a Accuracy 
653 |a Visual perception 
653 |a Deep learning 
653 |a Discoloration 
653 |a Disease 
653 |a Medical imaging 
653 |a Color 
653 |a Visual stimuli 
653 |a Occlusion 
653 |a Machine learning 
653 |a Pine trees 
653 |a Pests 
653 |a Epidemics 
653 |a Support vector machines 
653 |a Data collection 
653 |a Pest outbreaks 
653 |a Decline 
653 |a Morphology 
653 |a Elongated structure 
653 |a Sirex 
653 |a Sirex noctilio 
653 |a Environmental 
700 1 |a Zhao Jiaqiang  |u Shijiazhuang Institute of Fruit Trees, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050061, China 
700 1 |a Zhu Dexu  |u Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China 
700 1 |a Wang Zhengtong  |u Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China 
700 1 |a Song, Min  |u Heilongjiang Provincial Station for Forest Pest and Disease Control and Quarantine, Harbin 140080, China 
700 1 |a Chen, Tao  |u Fujin City Forest Pest and Disease Control and Quarantine Station, Jiamusi 146100, China 
700 1 |a Liang, Te  |u Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China 
700 1 |a Shi, Juan  |u Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China 
773 0 |t Insects  |g vol. 16, no. 8 (2025), p. 829-853 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244041250/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244041250/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244041250/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch