Determination of the Steady State Fiber Orientation Tensor States in Homogeneous Flows with Newton–Raphson Iteration Using Exact Jacobians

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Composites Science vol. 9, no. 8 (2025), p. 433-478
Autor principal: Awenlimobor, Aigbe E
Otros Autores: Smith, Douglas E
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244041583
003 UK-CbPIL
022 |a 2504-477X 
024 7 |a 10.3390/jcs9080433  |2 doi 
035 |a 3244041583 
045 2 |b d20250101  |b d20251231 
100 1 |a Awenlimobor, Aigbe E 
245 1 |a Determination of the Steady State Fiber Orientation Tensor States in Homogeneous Flows with Newton–Raphson Iteration Using Exact Jacobians 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Fiber orientation is an important descriptor of the microstructure for short fiber polymer composite materials where accurate and efficient prediction of the orientation state is crucial when evaluating the bulk thermo-mechanical response of the material. Macroscopic fiber orientation models employ the moment-tensor form in representing the fiber orientation state, and they all require a closure approximation for the higher-order orientation tensors. In addition, various models have more recently been developed to account for rotary diffusion due to fiber-fiber and fiber-matrix interactions which can now more accurately simulate the experimentally observed slow fiber kinematics in polymer composite processing. It is common to use explicit numerical initial value problem-ordinary differential equation (IVP-ODE) solvers such as the 4th- and 5th-order Dormand Prince Runge–Kutta (RK45) method to predict the transient and steady-state fiber orientation response. Here, we propose a computationally efficient method based on the Newton-Raphson (NR) iterative technique for determining steady state orientation tensor values by evaluating exact derivatives of the moment-tensor evolution equation with respect to the independent components of the orientation tensor. We consider various existing macroscopic-fiber orientation models and several closure approximations to ensure the robustness and reliability of the method. The performance and stability of the approach for obtaining physical solutions in various homogeneous flow fields is demonstrated through several examples. Validation of our orientation tensor exact derivatives is performed by benchmarking with results of finite difference techniques. Overall, our results show that the proposed NR method accurately predicts the steady state orientation for all tensor models, closure approximations and flow types considered in this paper and was relatively faster compared to the RK45 method. The NR convergence and stability behavior was seen to be sensitive to the initial orientation tensor guess value, the fiber orientation tensor model type and complexity, the flow type and extension to shear rate ratio. 
653 |a Fiber orientation 
653 |a Polymers 
653 |a Mathematical analysis 
653 |a Finite difference method 
653 |a Kinematics 
653 |a Short fibers 
653 |a Newton-Raphson method 
653 |a Runge-Kutta method 
653 |a Diffusion models 
653 |a Approximation 
653 |a Shear rate 
653 |a Polymer melts 
653 |a Objectivity 
653 |a Probability distribution 
653 |a Boundary value problems 
653 |a Jacobians 
653 |a Tensors 
653 |a Steady state 
653 |a Polymer matrix composites 
653 |a Mechanical analysis 
653 |a Eigenvalues 
653 |a Stability 
653 |a Differential equations 
653 |a Deformation 
653 |a Thermoplastic composites 
700 1 |a Smith, Douglas E 
773 0 |t Journal of Composites Science  |g vol. 9, no. 8 (2025), p. 433-478 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244041583/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244041583/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244041583/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch