Numerical Method for Internal Structure and Surface Evaluation in Coatings

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventions vol. 10, no. 4 (2025), p. 71-107
1. Verfasser: Kačinskas Tomas
Weitere Verfasser: Baskutis Saulius
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3244041643
003 UK-CbPIL
022 |a 2411-5134 
024 7 |a 10.3390/inventions10040071  |2 doi 
035 |a 3244041643 
045 2 |b d20250101  |b d20251231 
100 1 |a Kačinskas Tomas 
245 1 |a Numerical Method for Internal Structure and Surface Evaluation in Coatings 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study introduces a MATrix LABoratory (MATLAB, version R2024b, update 1 (24.2.0.2740171))-based automated system for the detection and measurement of indication areas in coated surfaces, enhancing the accuracy and efficiency of quality control processes in metal, polymeric and thermoplastic coatings. The developed code identifies various indication characteristics in the image and provides numerical results, assesses the size and quantity of indications and evaluates conformity to ISO standards. A comprehensive testing method, involving non-destructive penetrant testing (PT) and radiographic testing (RT), allowed for an in-depth analysis of surface and internal porosity across different coating methods, including aluminum-, copper-, polytetrafluoroethylene (PTFE)- and polyether ether ketone (PEEK)-based materials. Initial findings had a major impact on indicating a non-homogeneous surface of obtained coatings, manufactured using different technologies and materials. Whereas researchers using non-destructive testing (NDT) methods typically rely on visual inspection and manual counting, the system under study automates this process. Each sample image is loaded into MATLAB and analyzed using the Image Processing Tool, Computer Vision Toolbox, Statistics and Machine Learning Toolbox. The custom code performs essential tasks such as image conversion, filtering, boundary detection, layering operations and calculations. These processes are integral to rendering images with developed indications according to NDT method requirements, providing a detailed visual and numerical representation of the analysis. RT also validated the observations made through surface indication detection, revealing either the absence of hidden defects or, conversely, internal porosity correlating with surface conditions. Matrix and graphical representations were used to facilitate the comparison of test results, highlighting more advanced methods and materials as the superior choice for achieving optimal mechanical and structural integrity. This research contributes to addressing challenges in surface quality assurance, advancing digital transformation in inspection processes and exploring more advanced alternatives to traditional coating technologies and materials. 
653 |a Tomography 
653 |a Surface properties 
653 |a Nondestructive testing 
653 |a Quality control 
653 |a Defects 
653 |a Coatings 
653 |a Visual observation 
653 |a Quality assurance 
653 |a Matlab 
653 |a Computer vision 
653 |a Automation 
653 |a Cracks 
653 |a Machine learning 
653 |a Image processing 
653 |a Numerical methods 
653 |a Evaluation 
653 |a Radiography 
653 |a Composite materials 
653 |a Quality standards 
653 |a Radiographic testing 
653 |a Inspection 
653 |a Structural integrity 
653 |a Image filters 
653 |a Polytetrafluoroethylene 
653 |a Porous materials 
653 |a Methods 
653 |a Journal bearings 
653 |a Indication 
653 |a Graphical representations 
653 |a Morphology 
653 |a X-rays 
653 |a Polyether ether ketones 
653 |a Porosity 
700 1 |a Baskutis Saulius 
773 0 |t Inventions  |g vol. 10, no. 4 (2025), p. 71-107 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244041643/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244041643/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244041643/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch