Battery-Powered AGV Scheduling and Routing Optimization with Flexible Dual-Threshold Charging Strategy in Automated Container Terminals

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Journal of Marine Science and Engineering vol. 13, no. 8 (2025), p. 1526-1553
Tác giả chính: Guo Wenwen
Tác giả khác: Hu Huapeng, Sha Mei, Lian Jiarong, Yang Xiongfei
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3244043370
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13081526  |2 doi 
035 |a 3244043370 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Guo Wenwen 
245 1 |a Battery-Powered AGV Scheduling and Routing Optimization with Flexible Dual-Threshold Charging Strategy in Automated Container Terminals 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Battery-powered automatic guided vehicles (B-AGVs) serve as crucial horizontal transportation equipment in terminals and significantly impact the terminal transportation efficiency. Imbalanced B-AGV availability during terminal peak and off-peak periods is driven by dynamic vessel arrivals. We propose a flexible dual-threshold charging (FDTC) strategy synchronized with vessel dynamics. Unlike the static threshold charging (STC) strategy, FDTC dynamically adjusts its charging thresholds based on terminal workload intensity. And we develop a collaborative B-AGV scheduling and routing optimization model incorporating FDTC. A tailored Dijkstra-Partition neighborhood search (Dijkstra-Pns) algorithm is designed to resolve the problem in alignment with practical scenarios. Compared to the STC strategy, FDTC strategy significantly reduces the maximum B-AGV running time and decreases conflict waiting delays and charging times by 25.04% and 24.41%, respectively. Moreover, FDTC slashes quay crane (QC) waiting time by 40.78%, substantially boosting overall terminal operational efficiency. 
653 |a Scheduling 
653 |a Integer programming 
653 |a Cranes 
653 |a Collaboration 
653 |a Peak periods 
653 |a Optimization 
653 |a Decision making 
653 |a Charging 
653 |a Peripheral nervous system 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Automation 
653 |a Transport buildings, stations and terminals 
653 |a Vessels 
653 |a Automated guided vehicles 
653 |a Strategic planning 
653 |a Workloads 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Optimization models 
653 |a Run time (computers) 
653 |a Economic 
700 1 |a Hu Huapeng 
700 1 |a Sha Mei 
700 1 |a Lian Jiarong 
700 1 |a Yang Xiongfei 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 8 (2025), p. 1526-1553 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244043370/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244043370/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244043370/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch