A Digitally Controlled Adaptive Current Interface for Accurate Measurement of Resistive Sensors in Embedded Sensing Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Sensor and Actuator Networks vol. 14, no. 4 (2025), p. 82-100
Autor principal: Jittakort Jirapong
Otros Autores: Apinan, Aurasopon
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244044041
003 UK-CbPIL
022 |a 2224-2708 
024 7 |a 10.3390/jsan14040082  |2 doi 
035 |a 3244044041 
045 2 |b d20250101  |b d20251231 
084 |a 231482  |2 nlm 
100 1 |a Jittakort Jirapong  |u Department of Electrical Engineering, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand; jirapong_j@rmutt.ac.th 
245 1 |a A Digitally Controlled Adaptive Current Interface for Accurate Measurement of Resistive Sensors in Embedded Sensing Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed system dynamically adjusts the excitation current to maintain optimal Analog-to-Digital Converter (ADC) input conditions. The measurement circuit employs a fixed reference resistor and an inverting amplifier configuration, where the excitation current is generated by one or more pulse-width modulated (PWM) signals filtered through low-pass RC networks. A microcontroller selects the appropriate PWM channel to ensure that the output voltage remains within the ADC’s linear range. To support multiple sensors, an analog switch enables sequential measurements using the same dual-PWM current source. The full experimental implementation uses four op-amps to support modularity, buffering, and dual-range operation. Experimental results show accurate measurement of resistances from 1 kΩ to 100 kΩ, with maximum relative errors of 0.15% in the 1–10 kΩ range and 0.33% in the 10–100 kΩ range. The method provides a low-cost, scalable, and digitally controlled solution suitable for embedded resistive sensing applications without the need for high-resolution ADCs or programmable gain amplifiers. 
653 |a Microcontrollers 
653 |a Modularity 
653 |a Excitation 
653 |a Amplifiers 
653 |a Embedded systems 
653 |a Sensors 
653 |a Analog to digital converters 
653 |a Analog circuits 
653 |a Calibration 
653 |a Voltage dividers 
653 |a CMOS 
653 |a Current sources 
653 |a Pulse duration modulation 
700 1 |a Apinan, Aurasopon  |u Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand 
773 0 |t Journal of Sensor and Actuator Networks  |g vol. 14, no. 4 (2025), p. 82-100 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244044041/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244044041/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244044041/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch