GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Land vol. 14, no. 8 (2025), p. 1543-1566
מחבר ראשי: Pimenta Lianne
מחברים אחרים: Duarte, Lia, Teodoro, Ana Cláudia, Beltrão Norma, Gomes Dênis, Oliveira, Renata
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3244044600
003 UK-CbPIL
022 |a 2073-445X 
024 7 |a 10.3390/land14081543  |2 doi 
035 |a 3244044600 
045 2 |b d20250101  |b d20251231 
084 |a 231528  |2 nlm 
100 1 |a Pimenta Lianne  |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) 
245 1 |a GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil 
260 |b MDPI AG  |c 2025 
513 |a Case Study Journal Article 
520 3 |a Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. 
651 4 |a Amazon Basin 
651 4 |a Brazil 
653 |a Extreme weather 
653 |a Susceptibility 
653 |a Soil types 
653 |a Land use 
653 |a Drainage density 
653 |a Geographic information systems 
653 |a Economic growth 
653 |a Emergency preparedness 
653 |a Urban areas 
653 |a Urban sprawl 
653 |a Landslides & mudslides 
653 |a Decision making 
653 |a Criteria 
653 |a Mapping 
653 |a Risk management 
653 |a Rivers 
653 |a Urbanization 
653 |a Flood management 
653 |a Analytic hierarchy process 
653 |a Urban planning 
653 |a Floods 
653 |a Rainfall 
653 |a Flood mapping 
653 |a Disaster management 
653 |a Hydrology 
653 |a Environmental risk 
653 |a Hydrologic data 
653 |a Algebra 
653 |a Land cover 
653 |a Urban development 
653 |a Environmental quality 
653 |a Disaster risk 
653 |a Drainage 
653 |a Gross Domestic Product--GDP 
653 |a Rain 
653 |a Remote sensing 
700 1 |a Duarte, Lia  |u Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; amteodor@fc.up.pt 
700 1 |a Teodoro, Ana Cláudia  |u Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; amteodor@fc.up.pt 
700 1 |a Beltrão Norma  |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) 
700 1 |a Gomes Dênis  |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) 
700 1 |a Oliveira, Renata  |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) 
773 0 |t Land  |g vol. 14, no. 8 (2025), p. 1543-1566 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244044600/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244044600/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244044600/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch