GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
שמור ב:
| הוצא לאור ב: | Land vol. 14, no. 8 (2025), p. 1543-1566 |
|---|---|
| מחבר ראשי: | |
| מחברים אחרים: | , , , , |
| יצא לאור: |
MDPI AG
|
| נושאים: | |
| גישה מקוונת: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| תגים: |
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3244044600 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2073-445X | ||
| 024 | 7 | |a 10.3390/land14081543 |2 doi | |
| 035 | |a 3244044600 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231528 |2 nlm | ||
| 100 | 1 | |a Pimenta Lianne |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) | |
| 245 | 1 | |a GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Case Study Journal Article | ||
| 520 | 3 | |a Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. | |
| 651 | 4 | |a Amazon Basin | |
| 651 | 4 | |a Brazil | |
| 653 | |a Extreme weather | ||
| 653 | |a Susceptibility | ||
| 653 | |a Soil types | ||
| 653 | |a Land use | ||
| 653 | |a Drainage density | ||
| 653 | |a Geographic information systems | ||
| 653 | |a Economic growth | ||
| 653 | |a Emergency preparedness | ||
| 653 | |a Urban areas | ||
| 653 | |a Urban sprawl | ||
| 653 | |a Landslides & mudslides | ||
| 653 | |a Decision making | ||
| 653 | |a Criteria | ||
| 653 | |a Mapping | ||
| 653 | |a Risk management | ||
| 653 | |a Rivers | ||
| 653 | |a Urbanization | ||
| 653 | |a Flood management | ||
| 653 | |a Analytic hierarchy process | ||
| 653 | |a Urban planning | ||
| 653 | |a Floods | ||
| 653 | |a Rainfall | ||
| 653 | |a Flood mapping | ||
| 653 | |a Disaster management | ||
| 653 | |a Hydrology | ||
| 653 | |a Environmental risk | ||
| 653 | |a Hydrologic data | ||
| 653 | |a Algebra | ||
| 653 | |a Land cover | ||
| 653 | |a Urban development | ||
| 653 | |a Environmental quality | ||
| 653 | |a Disaster risk | ||
| 653 | |a Drainage | ||
| 653 | |a Gross Domestic Product--GDP | ||
| 653 | |a Rain | ||
| 653 | |a Remote sensing | ||
| 700 | 1 | |a Duarte, Lia |u Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; amteodor@fc.up.pt | |
| 700 | 1 | |a Teodoro, Ana Cláudia |u Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; amteodor@fc.up.pt | |
| 700 | 1 | |a Beltrão Norma |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) | |
| 700 | 1 | |a Gomes Dênis |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) | |
| 700 | 1 | |a Oliveira, Renata |u Department of Applied Social Sciences, State University of Pará State, Enéas Pinheiro, 2626-Marco, Belém 66095-015, PA, Brazil; lianne.bpimenta@aluno.uepa.br (L.P.); normaely@uepa.br (N.B.); deniss.feg@gmail.com (D.G.); renata.oliveira@uepa.br (R.O.) | |
| 773 | 0 | |t Land |g vol. 14, no. 8 (2025), p. 1543-1566 | |
| 786 | 0 | |d ProQuest |t Publicly Available Content Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3244044600/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3244044600/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3244044600/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |