A Review of Research on Autonomous Collision Avoidance Performance Testing and an Evaluation of Intelligent Vessels

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Marine Science and Engineering vol. 13, no. 8 (2025), p. 1570-1605
Autor principal: Cao Xingfei
Altres autors: Wang, Zhiming, Zhu Yahong, Zhang, Ting, Shi Guoyou, Shi Yingyu
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3244044614
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13081570  |2 doi 
035 |a 3244044614 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Cao Xingfei  |u Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China 
245 1 |a A Review of Research on Autonomous Collision Avoidance Performance Testing and an Evaluation of Intelligent Vessels 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a As intelligent vessel technology moves from the proof-of-concept stage to engineering applications, the performance testing and evaluation of autonomous collision avoidance algorithms have become core issues for safeguarding maritime traffic safety. The International Maritime Organization (IMO)’s Maritime Safety Committee (MSC), at its 109th session, agreed to a revised road map for the development of the Maritime Autonomous Surface Ships (MASS) Code; the field has experienced the development stages of single-vessel collision avoidance validation based on COLREGs, multimodal algorithm collaborative testing, and the current construction of a progressive validation system for the integration of a mix of virtual reality and actual reality. In recent years, relevant studies have achieved research achievements, especially in the compatibility of COLREGs and in accurate collision avoidance in complex situations, and other algorithm tests and evaluations have made great breakthroughs. However, a systematic literature review is still lacking. In this paper, we systematically review the research progress of autonomous collision avoidance performance testing and the evaluation of intelligent vessels; summarize the advantages and disadvantages of virtual testing, model testing, and full-scale vessel testing; and analyze the applicability and limitations of mainstream algorithms such as the velocity obstacle algorithm, the artificial potential field algorithm, and reinforcement learning. It focuses on the key technologies such as diverse scene generation, local scene slicing, and the construction of an evaluation index system. Finally, this paper summarizes the challenges faced by autonomous collision avoidance performance testing and the assessment of intelligent vessels and proposes potential technical solutions and future development directions in terms of virtual–real fusion testing, dynamic evaluation index optimization, and multimodal algorithm co-validation, aiming to provide a reference for the further development of this field. 
653 |a Potential fields 
653 |a Behavior 
653 |a Sea vessels 
653 |a Evaluation 
653 |a Performance evaluation 
653 |a Construction 
653 |a Algorithms 
653 |a Collision avoidance 
653 |a Performance testing 
653 |a Scene generation 
653 |a Collisions 
653 |a Computer applications 
653 |a Machine learning 
653 |a Maritime safety 
653 |a Model testing 
653 |a Developmental stages 
653 |a Avoidance behaviour 
653 |a Literature reviews 
653 |a Big Data 
653 |a Simulation 
653 |a Velocity 
653 |a Virtual reality 
653 |a Artificial intelligence 
653 |a Decision making 
653 |a Traffic accidents & safety 
653 |a Research & development--R&D 
653 |a Standardization 
653 |a Methods 
653 |a Shipping industry 
653 |a Economic 
700 1 |a Wang, Zhiming  |u Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China 
700 1 |a Zhu Yahong  |u Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China 
700 1 |a Zhang, Ting  |u Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China 
700 1 |a Shi Guoyou  |u Navigation College, Dalian Maritime University, Dalian 116026, China 
700 1 |a Shi Yingyu  |u Taihu Laboratory of Deepsea Technological Science Lian Yun Gang Center, Lianyungang 222000, China 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 8 (2025), p. 1570-1605 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244044614/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244044614/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244044614/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch