Arabic Abstractive Text Summarization Using an Ant Colony System

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Mathematics vol. 13, no. 16 (2025), p. 2613-2637
Egile nagusia: Al-Numai, Amal M
Beste egile batzuk: Azmi, Aqil M
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3244044837
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13162613  |2 doi 
035 |a 3244044837 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Al-Numai, Amal M 
245 1 |a Arabic Abstractive Text Summarization Using an Ant Colony System 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Arabic abstractive summarization presents a complex multi-objective optimization challenge, balancing readability, informativeness, and conciseness. While extractive approaches dominate NLP, abstractive methods—particularly for Arabic—remain underexplored due to linguistic complexity. This study introduces, for the first time, ant colony system (ACS) for Arabic abstractive summarization (named AASAC—Arabic Abstractive Summarization using Ant Colony), framing it as a combinatorial evolutionary optimization task. Our method integrates collocation and word-relation features into heuristic-guided fitness functions, simultaneously optimizing content coverage and linguistic coherence. Evaluations on a benchmark dataset using LemmaRouge, a lemma-based metric that evaluates semantic similarity rather than surface word forms, demonstrate consistent superiority. For 30% summaries, AASAC achieves 51.61% (LemmaRouge-1) and 46.82% (LemmaRouge-L), outperforming baselines by 13.23% and 20.49%, respectively. At 50% summary length, it reaches 64.56% (LemmaRouge-1) and 61.26% (LemmaRouge-L), surpassing baselines by 10.73% and 3.23%. These results highlight AASAC’s effectiveness in addressing multi-objective NLP challenges and establish its potential for evolutionary computation applications in language generation, particularly for complex morphological languages like Arabic. 
653 |a Arabic language 
653 |a Datasets 
653 |a Deep learning 
653 |a Readability 
653 |a Combinatorial analysis 
653 |a Ontology 
653 |a Words (language) 
653 |a Optimization 
653 |a Collocation methods 
653 |a Linguistic complexity 
653 |a Multiple objective analysis 
653 |a Summarization 
653 |a Fuzzy logic 
653 |a Linguistics 
653 |a Semantics 
653 |a Evolutionary computation 
653 |a Information storage 
653 |a Neural networks 
653 |a Methods 
653 |a Natural language processing 
653 |a Complexity 
653 |a Morphological complexity 
653 |a Traveling salesman problem 
653 |a Heuristic 
653 |a Coherence 
653 |a Computation 
653 |a Languages 
653 |a Colonies & territories 
700 1 |a Azmi, Aqil M 
773 0 |t Mathematics  |g vol. 13, no. 16 (2025), p. 2613-2637 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244044837/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244044837/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244044837/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch