Appointment Scheduling Considering Outpatient Unpunctuality Under Telemedicine Services

Gardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 16 (2025), p. 2591-2608
Autor Principal: Chen, Wei
Outros autores: Chen, Liang, Shen Xiaoxiao, Zhang, Yutao, Wang Xiulai
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
Descripción
Resumo:Patient unpunctuality substantially complicates appointment scheduling in integrated telemedicine–traditional outpatient systems. The current research frequently ignores behavioral distinctions between telemedicine patients and outpatients, while neglecting to measure the intangible burden on physicians from service mode switches. To address these gaps, this study incorporates patient heterogeneity and introduces two novel cost metrics. Specifically, we implement penalties for service-mode switching and penalties for consecutive telemedicine sessions. We develop a Stochastic Mixed-Integer Programming (SMIP) model. This stochastic model is transformed into a deterministic Mixed-Integer Linear Programming (MILP) formulation via Sample Average Approximation (SAA). Linearization techniques enhance computational efficiency. In numerical experiments, the dual-penalty model yields balanced schedules with moderate patient mix, reducing physician overtime by 62.5% and service mode switches by 55% compared to baseline approaches. Sensitivity analysis confirms that narrowing outpatient unpunctuality ranges significantly reduces patient waiting and overtime, while raising telemedicine patient proportions bolsters system stability at the cost of increased physician idle time. These insights offer actionable guidance for healthcare institutions managing integrated online–offline services.
ISSN:2227-7390
DOI:10.3390/math13162591
Fonte:Engineering Database