Experimental Study on the Impact Compression Properties of Aluminum Honeycomb with Gradient-Thickness Cell Walls Using a Three-Factor Orthogonal Matrix Design

Guardado en:
Detalles Bibliográficos
Publicado en:Materials vol. 18, no. 16 (2025), p. 3785-3805
Autor principal: Sun, Peng
Otros Autores: Zhang, Xiaoqiong, Jiao Yinghou, Liu Rongqiang, Wang, Tao
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244045791
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18163785  |2 doi 
035 |a 3244045791 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Sun, Peng  |u College of Mechanical and Electrical, Harbin Institute of Technology, Harbin 150001, China; hitsunpeng2013@163.com (P.S.); 
245 1 |a Experimental Study on the Impact Compression Properties of Aluminum Honeycomb with Gradient-Thickness Cell Walls Using a Three-Factor Orthogonal Matrix Design 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A novel honeycomb with gradient-thickness cell walls (HGTCWs) is fabricated through chemical etching to achieve progressive thickness reduction in the cell walls. This engineered honeycomb demonstrates superior energy absorption by effectively eliminating the peak load during the linear elastic stage of the load–displacement curve under impact loading, thereby preventing premature structural failure caused by excessive instantaneous loads. To systematically investigate the impact compression mechanics, energy absorption characteristics, and key influencing factors of aluminum HGTCWs, a three-factor orthogonal array of low-velocity impact experiments was designed. The design of experimental parameters for the impact test has taken into account the impact mass, impact velocity, and etching height. Comparative analysis assessed how these factors influence energy absorption performance. Results reveal that chemical etching-induced thickness gradient modification effectively suppresses peak load generation. Load–displacement curves exhibit distinct bilinear characteristics: an initial single linear phase when compression displacement is below the etching height, followed by a dual-linear phase with an inflection point at the gradient height. Time–velocity profiles during impact primarily consist of an initial nonlinear deceleration phase followed by a linear deceleration phase. Range analysis and analysis of variance identify impact velocity as the dominant factor influencing the energy absorption characteristics of HGTCWs. 
653 |a Load 
653 |a Mechanical properties 
653 |a Matrices (mathematics) 
653 |a Impact tests 
653 |a Optimization 
653 |a Homogenization 
653 |a Velocity distribution 
653 |a Impact velocity 
653 |a Energy 
653 |a Orthogonal arrays 
653 |a Manufacturing 
653 |a Efficiency 
653 |a Structural failure 
653 |a Velocity 
653 |a Energy absorption 
653 |a Impact loads 
653 |a Peak load 
653 |a Porous materials 
653 |a Etching 
653 |a Aluminum alloys 
653 |a Chemical etching 
653 |a Design 
653 |a Engineering 
653 |a Deformation 
653 |a Linear phase 
653 |a Geometry 
653 |a Design factors 
653 |a Compressive properties 
653 |a Thickness 
653 |a Aluminum 
700 1 |a Zhang, Xiaoqiong  |u College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China 
700 1 |a Jiao Yinghou  |u College of Mechanical and Electrical, Harbin Institute of Technology, Harbin 150001, China; hitsunpeng2013@163.com (P.S.); 
700 1 |a Liu Rongqiang  |u College of Mechanical and Electrical, Harbin Institute of Technology, Harbin 150001, China; hitsunpeng2013@163.com (P.S.); 
700 1 |a Wang, Tao  |u College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China 
773 0 |t Materials  |g vol. 18, no. 16 (2025), p. 3785-3805 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244045791/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244045791/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244045791/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch