Integrated Process Planning and Scheduling Framework Using an Optimized Rule-Mining Approach for Smart Manufacturing

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 16 (2025), p. 2605-2636
Autor principal: Syeda, Marzia
Otros Autores: Azab, Ahmed, Vital-Soto, Alejandro
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244045793
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13162605  |2 doi 
035 |a 3244045793 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Syeda, Marzia  |u Production & Operations Management Research Lab, Industrial and Manufacturing System Engineering Department, University of Windsor, Windsor, ON N9B 3P4, Canada; marzia@uwindsor.ca 
245 1 |a Integrated Process Planning and Scheduling Framework Using an Optimized Rule-Mining Approach for Smart Manufacturing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Manufacturing industries are undergoing a significant transformation toward Smart Manufacturing (SM) to meet the ever-evolving demands for customized products. A major obstacle in this transition is the integration of Computer-Aided Process Planning (CAPP) with Scheduling. This integration poses challenges because of conflicting objectives that must be balanced, resulting in the Integrated Process Planning and Scheduling problem. In response to these challenges, this research introduces a novel hybridized machine learning optimization approach designed to assign and sequence setups in Dynamic Flexible Job Shop environments via dispatching rule mining, accounting for real-time disruptions such as machine breakdowns. This approach connects CAPP and scheduling by considering setups as dispatching units, ultimately reducing makespan and improving manufacturing flexibility. The problem is modeled as a Dynamic Flexible Job Shop problem. It is tackled through a comprehensive methodology that combines mathematical programming, heuristic techniques, and the creation of a robust dataset capturing priority relationships among setups. Empirical results demonstrate that the proposed model achieves a 42.6% reduction in makespan, improves schedule robustness by 35%, and reduces schedule variability by 27% compared to classical dispatching rules. Additionally, the model achieves an average prediction accuracy of 92% on unseen instances, generating rescheduling decisions within seconds, which confirms its suitability for real-time Smart Manufacturing applications. 
653 |a Schedules 
653 |a Scheduling 
653 |a Process planning 
653 |a Data mining 
653 |a Random variables 
653 |a Costs 
653 |a Dispatching rules 
653 |a Mathematical programming 
653 |a Decision making 
653 |a Linear programming 
653 |a Breakdowns 
653 |a Production planning 
653 |a Literature reviews 
653 |a Manufacturing 
653 |a Objectives 
653 |a Machine learning 
653 |a Real time 
653 |a Computer aided operations 
700 1 |a Azab, Ahmed  |u Production & Operations Management Research Lab, Industrial and Manufacturing System Engineering Department, University of Windsor, Windsor, ON N9B 3P4, Canada; marzia@uwindsor.ca 
700 1 |a Vital-Soto, Alejandro  |u Shannon School of Business, Cape Breton University, Sydney, NS B1M 1A2, Canada; alejandro_vital@cbu.ca 
773 0 |t Mathematics  |g vol. 13, no. 16 (2025), p. 2605-2636 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244045793/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244045793/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244045793/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch