DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Machines vol. 13, no. 8 (2025), p. 657-675
Päätekijä: Cai Jiacheng
Muut tekijät: Chen Jiankui, Tang, Wei, Wu, Jinliang, Ruan Jingcheng, Yin Zhouping
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
Kuvaus
Abstrakti:The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet imaging. To address this, we propose a physics-informed degradation model, Diffraction–Gaussian–Motion–Noise (DGMN), that integrates Fraunhofer diffraction, defocus blur, motion blur, and adaptive noise to replicate real-world degradation in droplet images. To optimize the multi-parameter configuration of DGMN, we introduce the MISABO (Multi-strategy Improved Subtraction-Average-Based Optimizer), which incorporates Sobol sequence initialization for search diversity, lens opposition-based learning (LensOBL) for enhanced accuracy, and dimension learning-based hunting (DLH) for balanced global–local optimization. Benchmark function evaluations demonstrate that MISABO achieves superior convergence speed and accuracy. When applied to generate synthetic droplet images based on real droplet images captured from a self-developed OLED inkjet printer, the proposed MISABO-optimized DGMN framework significantly improves realism, enhancing synthesis quality by 37.7% over traditional manually configured models. This work lays a solid foundation for generating high-quality synthetic data to support droplet image restoration and downstream inkjet printing processes.
ISSN:2075-1702
DOI:10.3390/machines13080657
Lähde:Engineering Database