Design and Analysis of a Double-Three-Phase Permanent Magnet Fault-Tolerant Machine with Low Short-Circuit Current for Flywheel Energy Storage

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Machines vol. 13, no. 8 (2025), p. 720-733
Päätekijä: Li, Xiaotong
Muut tekijät: Liang Shaowei, Qi Buyang, Zhao Zhenghui, Ling Zhijian
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3244045905
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13080720  |2 doi 
035 |a 3244045905 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Li, Xiaotong  |u State Grid Beijing Electric Power Company, Beijing 100031, China; lixiaotong@bj.sgcc.com.cn 
245 1 |a Design and Analysis of a Double-Three-Phase Permanent Magnet Fault-Tolerant Machine with Low Short-Circuit Current for Flywheel Energy Storage 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a double-three-phase permanent magnet fault-tolerant machine (DTP-PMFTM) with low short-circuit current for flywheel energy storage systems (FESS) to balance torque performance and short-circuit current suppression. The key innovation lies in its modular winding configuration that ensures electrical isolation between the two winding sets. First, the structural characteristics of the double three-phase windings are analyzed. Subsequently, the harmonic features of the resultant magnetomotive force (MMF) are systematically investigated. To verify the performance, the proposed machine is compared against a conventional winding structure as a baseline, focusing on key parameters such as output torque and short-circuit current. The experimental results demonstrate that the proposed machine achieves an average torque of approximately 14.7 N·m with a torque ripple of about 3.27%, a phase inductance of approximately 3.7 mH, and a short-circuit current of approximately 50.9 A. Crucially, compared to the conventional winding, the modular structure increases the phase inductance by about 32.1% and reduces the short-circuit current by 29.7%. Finally, an experimental platform is established to validate the performance of the machine. 
653 |a Inductance 
653 |a Torque 
653 |a Energy storage 
653 |a Modular structures 
653 |a Coils (windings) 
653 |a Fault tolerance 
653 |a Flywheels 
653 |a Permanent magnets 
653 |a Short circuit currents 
700 1 |a Liang Shaowei  |u Energy Internet Research Institute, Tsinghua University, Beijing 100084, China 
700 1 |a Qi Buyang  |u China Electric Power Research Institute, Beijing 100192, China 
700 1 |a Zhao Zhenghui  |u School of Electrical and Information-Engineering, Jiangsu University, Zhenjiang 212013, China 
700 1 |a Ling Zhijian  |u School of Electrical and Information-Engineering, Jiangsu University, Zhenjiang 212013, China 
773 0 |t Machines  |g vol. 13, no. 8 (2025), p. 720-733 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244045905/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244045905/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244045905/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch