On Solving the Knapsack Problem with Conflicts

Salvato in:
Dettagli Bibliografici
Pubblicato in:Mathematics vol. 13, no. 16 (2025), p. 2674-2686
Autore principale: Montemanni Roberto
Altri autori: Smith, Derek H
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3244046116
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13162674  |2 doi 
035 |a 3244046116 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Montemanni Roberto  |u Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy 
245 1 |a On Solving the Knapsack Problem with Conflicts 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A variant of the well-known Knapsack Problem is studied in this paper. In the classic problem, a set of items is given, with each item characterized by a weight and a profit. A knapsack of a given capacity is provided, and the problem consists of selecting a subset of items such that the total weight does not exceed the capacity of the knapsack, while the total profit is maximized. In the variation considered in the present work, pairs of items are conflicting, and cannot be selected at the same time. The resulting problem, which can be used to model several real applications, is considerably harder to approach than the classic one. In this paper, we consider a mixed-integer linear program representing the problem and we solve it with a state-of-the-art black-box software. A vast experimental procedure on the instances available from the literature, and adopted in the last decade by the community, indicates that the approach we propose achieves results comparable with, and in many cases better than, those of state-of-the-art methods, notwithstanding that the latter are typically based on more complex and problem-specific ideas and algorithms than the idea we propose. 
653 |a Variables 
653 |a Linear programming 
653 |a Packing problem 
653 |a Algorithms 
653 |a Mixed integer 
653 |a Integer programming 
653 |a Knapsack problem 
653 |a Heuristic 
653 |a Experiments 
653 |a Optimization 
653 |a Cognition & reasoning 
653 |a Profits 
700 1 |a Smith, Derek H  |u Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK; derek.smith@southwales.ac.uk 
773 0 |t Mathematics  |g vol. 13, no. 16 (2025), p. 2674-2686 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244046116/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244046116/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244046116/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch