Fiber Optic Gyro Random Error Suppression Based on Dual Adaptive Kalman Filter

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Micromachines vol. 16, no. 8 (2025), p. 884-898
Päätekijä: Li, Hongcai
Muut tekijät: Liang Zhe, Zhou Zhaofa, Zhang, Zhili, Zhao Junyang, Tian Longjie
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3244047378
003 UK-CbPIL
022 |a 2072-666X 
024 7 |a 10.3390/mi16080884  |2 doi 
035 |a 3244047378 
045 2 |b d20250101  |b d20251231 
084 |a 231537  |2 nlm 
100 1 |a Li, Hongcai  |u Intelligent Control Laboratory, PLA Rocket Force University of Engineering, Xi’an 710025, China 
245 1 |a Fiber Optic Gyro Random Error Suppression Based on Dual Adaptive Kalman Filter 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The random error of fiber optic gyros is a critical factor affecting their measurement accuracy. However, the statistical characteristics of these errors exhibit time-varying properties, which degrade model fidelity and consequently impair the performance of random error suppression algorithms. To address these issues, this study first proposes a recursive dynamic Allan variance calculation method that effectively mitigates the poor real-time performance and spectral leakage inherent in conventional dynamic Allan variance techniques. Subsequently, the recursive dynamic Allan variance is integrated with the process variance estimation of Kalman filtering to construct a dual-adaptive Kalman filter capable of autonomously switching and adjusting between model parameters and noise variance. Finally, both static and dynamic validation experiments were conducted to evaluate the proposed method. The experimental results demonstrate that, compared to existing algorithms, the proposed approach significantly enhances the suppression of angular random walk errors in fiber optic gyros. 
653 |a Fiber optic gyroscopes 
653 |a Random errors 
653 |a Algorithms 
653 |a Methods 
653 |a Wavelet transforms 
653 |a Kalman filters 
653 |a Real time 
653 |a Variance 
653 |a Random walk 
700 1 |a Liang Zhe  |u Intelligent Control Laboratory, PLA Rocket Force University of Engineering, Xi’an 710025, China 
700 1 |a Zhou Zhaofa  |u Intelligent Control Laboratory, PLA Rocket Force University of Engineering, Xi’an 710025, China 
700 1 |a Zhang, Zhili  |u Intelligent Control Laboratory, PLA Rocket Force University of Engineering, Xi’an 710025, China 
700 1 |a Zhao Junyang  |u Intelligent Control Laboratory, PLA Rocket Force University of Engineering, Xi’an 710025, China 
700 1 |a Tian Longjie  |u Institute of Optics and Electronics, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China 
773 0 |t Micromachines  |g vol. 16, no. 8 (2025), p. 884-898 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244047378/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244047378/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244047378/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch