A Nasal Resistance Measurement System Based on Multi-Sensor Fusion of Pressure and Flow

Guardado en:
Detalles Bibliográficos
Publicado en:Micromachines vol. 16, no. 8 (2025), p. 886-913
Autor principal: Lian Xiaoqin
Otros Autores: Ma Guochun, Gao, Chao, Liu Chunquan, Wu Yelan, Guan Wenyang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244047621
003 UK-CbPIL
022 |a 2072-666X 
024 7 |a 10.3390/mi16080886  |2 doi 
035 |a 3244047621 
045 2 |b d20250101  |b d20251231 
084 |a 231537  |2 nlm 
100 1 |a Lian Xiaoqin  |u School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China; lianxq@th.btbu.edu.cn (X.L.); 2230601019@st.btbu.edu.cn (G.M.); 2330602060@st.btbu.edu.cn (C.L.); wuyel@th.btbu.edu.cn (Y.W.); guanwenyang@btbu.edu.cn (W.G.) 
245 1 |a A Nasal Resistance Measurement System Based on Multi-Sensor Fusion of Pressure and Flow 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Nasal obstruction is a common symptom of nasal conditions, with nasal resistance being a crucial physiological indicator for assessing severity. However, traditional rhinomanometry faces challenges with interference, limited automation, and unstable measurement results. To address these issues, this research designed a nasal resistance measurement system based on multi-sensor fusion of pressure and flow. The system comprises lower computer hardware for acquiring raw pressure–flow signals in the nasal cavity and upper computer software for segmenting and filtering effective respiratory cycles and calculating various nasal resistance indicators. Meanwhile, the system’s anti-interference capability was assessed using recall, precision, and accuracy rates for respiratory cycle recognition, while stability was evaluated by analyzing the standard deviation of nasal resistance indicators. The experimental results demonstrate that the system achieves recall and precision rates of 99% and 86%, respectively, for the recognition of effective respiratory cycles. Additionally, under the three common interference scenarios of saturated or weak breaths, breaths when not worn properly, and multiple breaths, the system can achieve a maximum accuracy of 96.30% in identifying ineffective respiratory cycles. Furthermore, compared to the measurement without filtering for effective respiratory cycles, the system reduces the median within-group standard deviation across four types of nasal resistance measurements by 5 to 18 times. In conclusion, the nasal resistance measurement system developed in this research demonstrates strong anti-interference capabilities, significantly enhances the automation of the measurement process and the stability of the measurement results, and offers robust technical support for the auxiliary diagnosis of related nasal conditions. 
653 |a Physiology 
653 |a Recall 
653 |a Respiratory system 
653 |a Accuracy 
653 |a Fluid dynamics 
653 |a Cooperation 
653 |a Automation 
653 |a Recognition 
653 |a Magnetic resonance imaging 
653 |a Signal processing 
653 |a Sensors 
653 |a Indicators 
653 |a Standard deviation 
653 |a Pressure distribution 
653 |a Measurement techniques 
653 |a Methods 
653 |a Stability 
653 |a Respiration 
653 |a Filtration 
653 |a Multisensor fusion 
700 1 |a Ma Guochun  |u School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China; lianxq@th.btbu.edu.cn (X.L.); 2230601019@st.btbu.edu.cn (G.M.); 2330602060@st.btbu.edu.cn (C.L.); wuyel@th.btbu.edu.cn (Y.W.); guanwenyang@btbu.edu.cn (W.G.) 
700 1 |a Gao, Chao  |u School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China; lianxq@th.btbu.edu.cn (X.L.); 2230601019@st.btbu.edu.cn (G.M.); 2330602060@st.btbu.edu.cn (C.L.); wuyel@th.btbu.edu.cn (Y.W.); guanwenyang@btbu.edu.cn (W.G.) 
700 1 |a Liu Chunquan  |u School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China; lianxq@th.btbu.edu.cn (X.L.); 2230601019@st.btbu.edu.cn (G.M.); 2330602060@st.btbu.edu.cn (C.L.); wuyel@th.btbu.edu.cn (Y.W.); guanwenyang@btbu.edu.cn (W.G.) 
700 1 |a Wu Yelan  |u School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China; lianxq@th.btbu.edu.cn (X.L.); 2230601019@st.btbu.edu.cn (G.M.); 2330602060@st.btbu.edu.cn (C.L.); wuyel@th.btbu.edu.cn (Y.W.); guanwenyang@btbu.edu.cn (W.G.) 
700 1 |a Guan Wenyang  |u School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China; lianxq@th.btbu.edu.cn (X.L.); 2230601019@st.btbu.edu.cn (G.M.); 2330602060@st.btbu.edu.cn (C.L.); wuyel@th.btbu.edu.cn (Y.W.); guanwenyang@btbu.edu.cn (W.G.) 
773 0 |t Micromachines  |g vol. 16, no. 8 (2025), p. 886-913 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244047621/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244047621/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244047621/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch