Diffusion of Alkaline Metals in Two-Dimensional β1-ScSi2N4 and β2-ScSi2N4 Materials: A First-Principles Investigation

Guardado en:
Detalles Bibliográficos
Publicado en:Nanomaterials vol. 15, no. 16 (2025), p. 1268-1283
Autor principal: Liu, Ying
Otros Autores: Fu, Han, Han Wanting, Ma, Rui, Yang, Lihua, Qu Xin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244048196
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15161268  |2 doi 
035 |a 3244048196 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Liu, Ying 
245 1 |a Diffusion of Alkaline Metals in Two-Dimensional β<sub>1</sub>-ScSi<sub>2</sub>N<sub>4</sub> and β<sub>2</sub>-ScSi<sub>2</sub>N<sub>4</sub> Materials: A First-Principles Investigation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The MA2Z4 family represents a class of two-dimensional materials renowned for their outstanding mechanical properties and excellent environmental stability. By means of elemental substitution, we designed two novel phases of ScSi2N4, namely β1 and β2. Their dynamical, thermal, and mechanical stabilities were thoroughly verified through phonon dispersion analysis, ab initio molecular dynamics (AIMD) simulations, and calculations of mechanical parameters such as Young’s modulus and Poisson’s ratio. Electronic structure analysis using both PBE and HSE06 methods further revealed that both the β1 and β2 phases exhibit metallic behavior, highlighting their potential for battery-related applications. Based on these outstanding properties, the climbing image nudged elastic band (CI-NEB) method was employed to investigate the diffusion behavior of Li, Na, and K ions on the material surfaces. Both structures demonstrate extremely low diffusion energy barriers (Li: 0.38 eV, Na: 0.22 eV, K: 0.12 eV), indicating rapid ion migration—especially for K—and excellent rate performance. The lowest barrier for K ions (0.12 eV) suggests the fastest diffusion kinetics, making it particularly suitable for high-power potassium-ion batteries. The significantly lower barrier for Na ions (0.22 eV) compared with Li (0.38 eV) implies that both β1 and β2 phases may be more favorable for fast-charging/discharging sodium-ion battery applications. First-principles calculations were applied to determine the open-circuit voltage (OCV) of the battery materials. The β2 phase exhibits a higher OCV in Li/Na systems, while the β1 phase shows more prominent voltage for K. The results demonstrate that both phases possess high theoretical capacities and suitable OCVs. 
653 |a First principles 
653 |a Ion migration 
653 |a Poisson's ratio 
653 |a Diffusion barriers 
653 |a Ions 
653 |a Mechanical properties 
653 |a Batteries 
653 |a Energy storage 
653 |a Structural analysis 
653 |a Two dimensional materials 
653 |a Voltage 
653 |a Simulation 
653 |a Research methodology 
653 |a Lithium 
653 |a Diffusion 
653 |a Phases 
653 |a Metals 
653 |a Sodium-ion batteries 
653 |a Chemical vapor deposition 
653 |a Diffusion rate 
653 |a Open circuit voltage 
653 |a Molecular dynamics 
653 |a Sodium 
653 |a Electronic structure 
653 |a Rechargeable batteries 
700 1 |a Fu, Han 
700 1 |a Han Wanting 
700 1 |a Ma, Rui 
700 1 |a Yang, Lihua 
700 1 |a Qu Xin 
773 0 |t Nanomaterials  |g vol. 15, no. 16 (2025), p. 1268-1283 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244048196/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244048196/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244048196/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch