Generation of Higher-Order Hermite–Gaussian Modes Based on Physical Model and Deep Learning

Guardado en:
Bibliografiske detaljer
Udgivet i:Photonics vol. 12, no. 8 (2025), p. 801-813
Hovedforfatter: Chen, Tai
Andre forfattere: Jiang Chengcai, Jia, Tao, Long, Ma, Cao Longzhou
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3244049400
003 UK-CbPIL
022 |a 2304-6732 
024 7 |a 10.3390/photonics12080801  |2 doi 
035 |a 3244049400 
045 2 |b d20250101  |b d20251231 
084 |a 231546  |2 nlm 
100 1 |a Chen, Tai  |u School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, China; taichen04@163.com (T.C.); chengcaijiang2003@163.com (C.J.); taojia2005@163.com (J.T.) 
245 1 |a Generation of Higher-Order Hermite–Gaussian Modes Based on Physical Model and Deep Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The higher-order Hermite–Gaussian (HG) modes exhibit complex spatial distributions and find a wide range of applications in fields such as quantum information processing, optical communications, and precision measurements. In recent years, the advancement of deep learning has emerged as an effective approach for generating higher-order HG modes. However, the traditional data-driven deep learning method necessitates a substantial amount of labeled data for training, entails a lengthy data acquisition process, and imposes stringent requirements on system stability. In practical applications, these methods are confronted with challenges such as the high cost of data labeling. This paper proposes a method that integrates a physical model with deep learning. By utilizing only a single intensity distribution of the target optical field and incorporating the physical model, the training of the neural network can be accomplished, thereby eliminating the dependency of traditional data-driven deep learning methods on large datasets. Experimental results demonstrate that, compared with the traditional data-driven deep learning method, the method proposed in this paper yields a smaller root mean squared error between the generated higher-order HG modes. The quality of the generated modes is higher, while the training time of the neural network is shorter, indicating greater efficiency. By incorporating the physical model into deep learning, this approach overcomes the limitations of traditional deep learning methods, offering a novel solution for applying deep learning in light field manipulation, quantum physics, and other related fields. 
653 |a Data acquisition 
653 |a Spatial distribution 
653 |a Quantum phenomena 
653 |a Data processing 
653 |a Deep learning 
653 |a Hermite-Gaussian modes 
653 |a Neural networks 
653 |a Fourier transforms 
653 |a Communication 
653 |a Electron microscopes 
653 |a Optical data processing 
653 |a Information processing 
653 |a Algorithms 
653 |a Quantum theory 
653 |a Systems stability 
700 1 |a Jiang Chengcai  |u School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, China; taichen04@163.com (T.C.); chengcaijiang2003@163.com (C.J.); taojia2005@163.com (J.T.) 
700 1 |a Jia, Tao  |u School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, China; taichen04@163.com (T.C.); chengcaijiang2003@163.com (C.J.); taojia2005@163.com (J.T.) 
700 1 |a Long, Ma  |u School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, China; taichen04@163.com (T.C.); chengcaijiang2003@163.com (C.J.); taojia2005@163.com (J.T.) 
700 1 |a Cao Longzhou  |u School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, China; taichen04@163.com (T.C.); chengcaijiang2003@163.com (C.J.); taojia2005@163.com (J.T.) 
773 0 |t Photonics  |g vol. 12, no. 8 (2025), p. 801-813 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244049400/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244049400/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244049400/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch