Optical Path Design of an Integrated Cavity Optomechanical Accelerometer with Strip Waveguides

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Photonics vol. 12, no. 8 (2025), p. 785-796
Yazar: Chengwei, Xian
Diğer Yazarlar: Kuang Pengju, Li, Zhe, Zhang, Yi, Wang Changsong, Zhou, Rudi, Wen Guangjun, Huang, Yongjun, Fan Boyu
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3244049433
003 UK-CbPIL
022 |a 2304-6732 
024 7 |a 10.3390/photonics12080785  |2 doi 
035 |a 3244049433 
045 2 |b d20250101  |b d20251231 
084 |a 231546  |2 nlm 
100 1 |a Chengwei, Xian  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
245 1 |a Optical Path Design of an Integrated Cavity Optomechanical Accelerometer with Strip Waveguides 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element Analysis (FEA) and Finite-Difference Time-Domain (FDTD) methods are employed to systematically investigate the performance of key optical structures, including the resonant modes and bandgap characteristics of photonic crystal (PhC) microcavities, transmission loss of strip waveguides, coupling efficiency of tapered-lensed fiber-to-waveguide end-faces, coupling characteristics between strip waveguides and PhC waveguides, and the coupling mechanism between PhC waveguides and microcavities. Simulation results demonstrate that the designed PhC microcavity achieves a quality factor (Q-factor) of 2.26 × 105 at a 1550 nm wavelength while the optimized strip waveguide exhibits a low loss of merely 0.2 dB over a 5000 μm transmission length. The strip waveguide to PhC waveguide coupling achieves 92% transmittance at the resonant frequency, corresponding to a loss below 0.4 dB. The optimized edge coupling structure exhibits a transmittance of 75.8% (loss < 1.2 dB), with a 30 μm coupling length scheme (60% transmittance, ~2.2 dB loss) ultimately selected based on process feasibility trade-offs. The total optical path system loss (input to output) is 5.4 dB. The paper confirms that the PhC waveguide–microcavity evanescent coupling method can effectively excite the target cavity mode, ensuring optomechanical coupling efficiency for the accelerometer. This research provides theoretical foundations and design guidelines for the fabrication of high-precision monolithic integrated cavity optomechanical accelerometers. 
653 |a Silicon 
653 |a Transmittance 
653 |a Finite element method 
653 |a Accelerometers 
653 |a Transmission loss 
653 |a Finite difference time domain method 
653 |a Photonic crystals 
653 |a Efficiency 
653 |a Design 
653 |a Boundary conditions 
653 |a Coupling 
653 |a Propagation 
653 |a Design optimization 
653 |a Simulation 
653 |a Fabrication 
653 |a Lasers 
653 |a Microcavities 
653 |a Resonant frequencies 
653 |a SOI (semiconductors) 
653 |a Systems stability 
653 |a Waveguides 
653 |a Strip 
700 1 |a Kuang Pengju  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
700 1 |a Li, Zhe  |u School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 201911061123@std.uestc.edu.cn 
700 1 |a Zhang, Yi  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
700 1 |a Wang Changsong  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
700 1 |a Zhou, Rudi  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
700 1 |a Wen Guangjun  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
700 1 |a Huang, Yongjun  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
700 1 |a Fan Boyu  |u School of Information and Communication Engineering, Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT, University of Electronic Science and Technology of China, Chengdu 611731, China; xcw@cdtu.edu.cn (C.X.); kpj@uestc.edu.cn (P.K.); 202322011920@std.uestc.edu.cn (Y.Z.); 2021070901013@std.uestc.edu.cn (C.W.); 202422011922@std.uestc.edu.cn (R.Z.); wgj@uestc.edu.cn (G.W.); yongjunh@uestc.edu.cn (Y.H.) 
773 0 |t Photonics  |g vol. 12, no. 8 (2025), p. 785-796 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244049433/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244049433/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244049433/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch