Simulation-Based Verification and Application Research of Spatial Spectrum Modulation Technology for Optical Imaging Systems
Kaydedildi:
| Yayımlandı: | Photonics vol. 12, no. 8 (2025), p. 755-771 |
|---|---|
| Yazar: | |
| Diğer Yazarlar: | , , , |
| Baskı/Yayın Bilgisi: |
MDPI AG
|
| Konular: | |
| Online Erişim: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiketler: |
Etiket eklenmemiş, İlk siz ekleyin!
|
| Özet: | Leveraging Fourier optics theory and Abbe’s imaging principle, this study establishes that optical imaging fundamentally involves selective spatial spectrum recombination at the Fourier plane. Three classical experiments quantitatively validate universal spectrum manipulation mechanisms: (1) The Abbe-Porter experiment confirmed spectral filtering, directly demonstrating image synthesis from transmitted spectral components. (2) Zernike phase-contrast microscopy quantified spectral phase modulation, overcoming the weak-phase-object detection limit by significantly enhancing contrast. (3) Optical joint transform correlation (JTC) demonstrated efficient spectral amplitude modulation for high-speed, high-accuracy image recognition. Collectively, these results form a comprehensive framework for active light field manipulation at the spectral plane, extending modulation capabilities to phase and amplitude dimensions. This work provides a foundational theoretical and technical framework for designing advanced optical systems, extending modulation capabilities to phase and amplitude dimensions. |
|---|---|
| ISSN: | 2304-6732 |
| DOI: | 10.3390/photonics12080755 |
| Kaynak: | Advanced Technologies & Aerospace Database |