Advances in UAV Remote Sensing for Monitoring Crop Water and Nutrient Status: Modeling Methods, Influencing Factors, and Challenges

Guardado en:
Bibliografiske detaljer
Udgivet i:Plants vol. 14, no. 16 (2025), p. 2544-2574
Hovedforfatter: Yang, Xiaofei
Andre forfattere: Chen, Junying, Lu Xiaohan, Liu, Hao, Liu, Yanfu, Bai Xuqian, Long, Qian, Zhang, Zhitao
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3244051177
003 UK-CbPIL
022 |a 2223-7747 
024 7 |a 10.3390/plants14162544  |2 doi 
035 |a 3244051177 
045 2 |b d20250101  |b d20251231 
084 |a 231551  |2 nlm 
100 1 |a Yang, Xiaofei  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
245 1 |a Advances in UAV Remote Sensing for Monitoring Crop Water and Nutrient Status: Modeling Methods, Influencing Factors, and Challenges 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the advancement of precision agriculture, Unmanned Aerial Vehicle (UAV)-based remote sensing has been increasingly employed for monitoring crop water and nutrient status due to its high flexibility, fine spatial resolution, and rapid data acquisition capabilities. This review systematically examines recent research progress and key technological pathways in UAV-based remote sensing for crop water and nutrient monitoring. It provides an in-depth analysis of UAV platforms, sensor configurations, and their suitability across diverse agricultural applications. The review also highlights critical data processing steps—including radiometric correction, image stitching, segmentation, and data fusion—and compares three major modeling approaches for parameter inversion: vegetation index-based, data-driven, and physically based methods. Representative application cases across various crops and spatiotemporal scales are summarized. Furthermore, the review explores factors affecting monitoring performance, such as crop growth stages, spatial resolution, illumination and meteorological conditions, and model generalization. Despite significant advancements, current limitations include insufficient sensor versatility, labor-intensive data processing chains, and limited model scalability. Finally, the review outlines future directions, including the integration of edge intelligence, hybrid physical–data modeling, and multi-source, three-dimensional collaborative sensing. This work aims to provide theoretical insights and technical support for advancing UAV-based remote sensing in precision agriculture. 
653 |a Physiology 
653 |a Dielectric properties 
653 |a Data acquisition 
653 |a Data processing 
653 |a Modelling 
653 |a Remote sensing 
653 |a Water depth 
653 |a Water 
653 |a Remote monitoring 
653 |a Unmanned aerial vehicles 
653 |a Agriculture 
653 |a Image processing 
653 |a Spatial discrimination 
653 |a Data integration 
653 |a Radiation 
653 |a Efficiency 
653 |a Nitrogen 
653 |a Aircraft 
653 |a Stitching 
653 |a Vegetation 
653 |a Crops 
653 |a Crop growth 
653 |a Image segmentation 
653 |a Vegetation index 
653 |a Nutrient status 
653 |a Spatial resolution 
653 |a Precision agriculture 
653 |a Aerodynamics 
653 |a Sensors 
653 |a Radiometric correction 
653 |a Algorithms 
700 1 |a Chen, Junying  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
700 1 |a Lu Xiaohan  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
700 1 |a Liu, Hao  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
700 1 |a Liu, Yanfu  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
700 1 |a Bai Xuqian  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
700 1 |a Long, Qian  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
700 1 |a Zhang, Zhitao  |u College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China; xiaofei-yang@nwafu.edu.cn (X.Y.); 
773 0 |t Plants  |g vol. 14, no. 16 (2025), p. 2544-2574 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244051177/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244051177/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244051177/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch