Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty

Guardat en:
Dades bibliogràfiques
Publicat a:Processes vol. 13, no. 8 (2025), p. 2458-2484
Autor principal: Qiu Zejian
Altres autors: Zhu Zhuowen, Yu, Lili, Han Zhanyuan, Shao Weitao, Zhang, Kuan, Ma Yinfeng
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3244057504
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13082458  |2 doi 
035 |a 3244057504 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Qiu Zejian  |u Guangdong Power Grid Corp, Dongguan Power Supply Bureau, Dongguan 523000, China 
245 1 |a Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. 
653 |a Load 
653 |a Accuracy 
653 |a Distributed generation 
653 |a Voltage 
653 |a Optimization 
653 |a Signal processing 
653 |a Power flow 
653 |a Closed loops 
653 |a Renewable energy 
653 |a Long short-term memory 
653 |a Statistical analysis 
653 |a Uncertainty 
653 |a Probability distribution 
653 |a Climate change 
653 |a Prediction models 
653 |a Robustness 
653 |a Wind power 
653 |a Electric potential 
653 |a Confidence intervals 
653 |a Neural networks 
653 |a Relaxation method (mathematics) 
653 |a Renewable resources 
653 |a Error reduction 
653 |a Mixed integer 
653 |a Alternating current 
653 |a Alternative energy sources 
653 |a Decision making 
653 |a Energy distribution 
700 1 |a Zhu Zhuowen  |u Guangdong Power Grid Corp, Dongguan Power Supply Bureau, Dongguan 523000, China 
700 1 |a Yu, Lili  |u Guangdong Power Grid Corp, Dongguan Power Supply Bureau, Dongguan 523000, China 
700 1 |a Han Zhanyuan  |u Guangdong Power Grid Corp, Dongguan Power Supply Bureau, Dongguan 523000, China 
700 1 |a Shao Weitao  |u Guangdong Power Grid Corp, Dongguan Power Supply Bureau, Dongguan 523000, China 
700 1 |a Zhang, Kuan  |u State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; kuanzhang@ncepu.edu.cn 
700 1 |a Ma Yinfeng  |u State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; kuanzhang@ncepu.edu.cn 
773 0 |t Processes  |g vol. 13, no. 8 (2025), p. 2458-2484 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244057504/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244057504/fulltextwithgraphics/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244057504/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch