Temporal-Aware Chain-of-Thought Reasoning for Vibration-Based Pump Fault Diagnosis

Shranjeno v:
Bibliografske podrobnosti
izdano v:Processes vol. 13, no. 8 (2025), p. 2624-2647
Glavni avtor: Zeng Jinchao
Drugi avtorji: Li, Zicheng, Zheng Zuopeng, Lin Qizhe
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3244057786
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13082624  |2 doi 
035 |a 3244057786 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Zeng Jinchao  |u College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China; zeng18779777724@163.com (J.Z.); li13045765073@163.com (Z.L.) 
245 1 |a Temporal-Aware Chain-of-Thought Reasoning for Vibration-Based Pump Fault Diagnosis 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Industrial pump systems require real-time fault diagnosis for predictive maintenance, but conventional Chain-of-Thought (COT) reasoning faces computational bottlenecks when processing high-frequency vibration data. This paper proposes Vibration-Aware COT (VA-COT), a novel framework that integrates multi-domain feature fusion (time, frequency, time–frequency) with adaptive reasoning depth control. Key innovations involve expert prior-guided dynamic feature selection to optimize edge-device inputs, complexity-aware reasoning chains reducing computational steps by 40–65% through confidence-based early termination, and lightweight deployment on industrial ARM-based single-board computers (SBCs). Evaluated on a 12-class pump fault dataset (5400 samples from centrifugal/gear pumps), VA-COT achieves 93.2% accuracy surpassing standard COT (89.3%) and CNN–LSTM (Convolutional Neural Network-Long Short-Term Memory network) (91.2%), while cutting latency to <1.1 s and memory usage by 65%. Six-month validation at pump manufacturing facilities demonstrated 35% maintenance cost reduction and 98% faster diagnostics versus manual methods, proving its viability for IIoT (Industrial Internet of Things) deployment. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Artificial neural networks 
653 |a Real time 
653 |a Signal processing 
653 |a Computer applications 
653 |a Gear pumps 
653 |a Long short-term memory 
653 |a Vibration analysis 
653 |a Machine learning 
653 |a Fault diagnosis 
653 |a Maintenance costs 
653 |a Fourier transforms 
653 |a Neural networks 
653 |a Process controls 
653 |a Reasoning 
653 |a Support vector machines 
653 |a Network latency 
653 |a Industrial applications 
653 |a Computers 
653 |a Vibration 
653 |a Latency 
653 |a Predictive maintenance 
653 |a Industrial Internet of Things 
700 1 |a Li, Zicheng  |u College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China; zeng18779777724@163.com (J.Z.); li13045765073@163.com (Z.L.) 
700 1 |a Zheng Zuopeng  |u Zhejiang TONGLI Transmission Technology Co., Ltd., Ruian 325205, China 
700 1 |a Lin Qizhe  |u College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China; zeng18779777724@163.com (J.Z.); li13045765073@163.com (Z.L.) 
773 0 |t Processes  |g vol. 13, no. 8 (2025), p. 2624-2647 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244057786/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244057786/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244057786/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch