An Extended Model Approach to Study the Power Flow Analysis of Complex Power Systems
שמור ב:
| הוצא לאור ב: | Processes vol. 13, no. 8 (2025), p. 2607-2633 |
|---|---|
| מחבר ראשי: | |
| מחברים אחרים: | , |
| יצא לאור: |
MDPI AG
|
| נושאים: | |
| גישה מקוונת: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| תגים: |
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3244058065 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-9717 | ||
| 024 | 7 | |a 10.3390/pr13082607 |2 doi | |
| 035 | |a 3244058065 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231553 |2 nlm | ||
| 100 | 1 | |a Xu, Jie |u Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Wuhu 241000, China | |
| 245 | 1 | |a An Extended Model Approach to Study the Power Flow Analysis of Complex Power Systems | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This paper focuses on the reconfigurability of power system extension models and improves the adaptability of radiation distribution network schemes to complex power networks. The existing Newton–Raphson based solutions face difficulties in reconstructing dynamics, often failing to converge or requiring high initial condition settings in extended systems. For the IEEE 30-bus system, based on node-provided data, we optimized the Newton–Raphson algorithm model for practical complex power systems. The novel optimization algorithm leverages multi-radiation power grid reconfiguration, significantly reducing dependencies on optimization time and initial state reconstruction. The results verify the effectiveness of the model and algorithm. | |
| 653 | |a Newton-Raphson method | ||
| 653 | |a Radiation distribution | ||
| 653 | |a Variables | ||
| 653 | |a Monte Carlo simulation | ||
| 653 | |a Algorithms | ||
| 653 | |a Power supply | ||
| 653 | |a Energy storage | ||
| 653 | |a Optimization algorithms | ||
| 653 | |a Reconfiguration | ||
| 653 | |a Power flow | ||
| 653 | |a Optimization | ||
| 700 | 1 | |a Zhang, He |u School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China; zhanghe248@foxmail.com | |
| 700 | 1 | |a Wang Shinong |u Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Wuhu 241000, China | |
| 773 | 0 | |t Processes |g vol. 13, no. 8 (2025), p. 2607-2633 | |
| 786 | 0 | |d ProQuest |t Materials Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3244058065/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3244058065/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3244058065/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |