Estimating Position, Diameter at Breast Height, and Total Height of Eucalyptus Trees Using Portable Laser Scanning

Guardat en:
Dades bibliogràfiques
Publicat a:Remote Sensing vol. 17, no. 16 (2025), p. 2904-2923
Autor principal: Machado, Milena Duarte
Altres autors: da Silva Gilson Fernandes, de Almeida André Quintão, de Mendonça Adriano Ribeiro, Martins-Neto, Rorai Pereira, Schimalski, Marcos Benedito
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3244058985
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17162904  |2 doi 
035 |a 3244058985 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Machado, Milena Duarte  |u Department of Forest and Wood Sciences, Federal University of Espirito Santo, Jeronimo Monteiro 29550-000, ES, Brazil; millena.machado@edu.ufes.br (M.D.M.); gilson.silva@ufes.br (G.F.d.S.); adriano.medonca@ufes.br (A.R.d.M.) 
245 1 |a Estimating Position, Diameter at Breast Height, and Total Height of <i>Eucalyptus</i> Trees Using Portable Laser Scanning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Forest management planning depends on accurately collecting information on available resources, gathered by forest inventories. However, due to the extent of the planted areas in the world, collecting information traditionally has become challenging. Terrestrial light detection and ranging (LiDAR) has emerged as a promising tool to enhance forest inventory. However, selecting the optimal 3D point cloud density for accurately estimating tree attributes remains an open question. The objective of this study was to evaluate the accuracy of different point densities (points per square meter) in point clouds obtained through portable laser scanning combined with simultaneous localization and mapping (PLS-SLAM). The study aimed to identify tree positions and estimate the diameter at breast height (DBH) and total height (H) of 71 trees in a eucalyptus plantation in Brazil. We also tested a semi-automatic method for estimating total height. Point clouds with densities greater than 100 points/m2 enabled the detection of over 88.7% of individual trees. The root mean square error (RMSE) of the best DBH measurement was 1.6 cm (RMSE = 5.9%) and the best H measurement (semi-automatic method) was 1.2 m (RMSE = 4.2%) for the point cloud with 36,000 points/m2. When measuring the total heights of the largest trees (H > 31.4 m) using LiDAR, the values were always underestimated considering a reference value, and their measurements were significantly different (p-value < 0.05 by the t-test). For point clouds with a density of 36,000 points/m2, the automated DBH and total tree height estimations yielded RMSEs of 5.9% and 14.4%, with biases of 4.8% and −1.4%, respectively. When using point clouds of 10 points/m2, RMSE values increased to 18.8% for DBH and 28.4% for total tree height, while the bias was 6.2% and 18.4%, respectively. Additionally, total tree height estimations obtained via a semi-automatic method resulted in a lower RMSE of 4.2% and a bias of 1.5%. These findings indicate that point clouds acquired through PLS-SLAM with densities exceeding 100 points/m2 are suitable for automated DBH estimation in the studied plantation. Despite the increased processing time required, the semi-automatic method is recommended for total tree height estimation due to its superior accuracy. 
651 4 |a Brazil 
651 4 |a Norway 
653 |a Mean square errors 
653 |a Forest management 
653 |a Simultaneous localization and mapping 
653 |a Accuracy 
653 |a Plantations 
653 |a Bias 
653 |a Forestry 
653 |a Diameters 
653 |a Scanners 
653 |a Estimates 
653 |a Lidar 
653 |a Laser applications 
653 |a Management planning 
653 |a Localization 
653 |a Trees 
653 |a Density 
653 |a Data collection 
653 |a Eucalyptus 
653 |a Lasers 
653 |a Root-mean-square errors 
653 |a Sensors 
653 |a Three dimensional models 
653 |a Variables 
653 |a Portability 
653 |a Estimation 
700 1 |a da Silva Gilson Fernandes  |u Department of Forest and Wood Sciences, Federal University of Espirito Santo, Jeronimo Monteiro 29550-000, ES, Brazil; millena.machado@edu.ufes.br (M.D.M.); gilson.silva@ufes.br (G.F.d.S.); adriano.medonca@ufes.br (A.R.d.M.) 
700 1 |a de Almeida André Quintão  |u Department of Agricultural Engineering, Federal University of Sergipe, São Cristóvão 49107-230, SE, Brazil; andreqa@academico.ufs.br 
700 1 |a de Mendonça Adriano Ribeiro  |u Department of Forest and Wood Sciences, Federal University of Espirito Santo, Jeronimo Monteiro 29550-000, ES, Brazil; millena.machado@edu.ufes.br (M.D.M.); gilson.silva@ufes.br (G.F.d.S.); adriano.medonca@ufes.br (A.R.d.M.) 
700 1 |a Martins-Neto, Rorai Pereira  |u Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; pereira_martins_neto@fld.czu.cz 
700 1 |a Schimalski, Marcos Benedito  |u Department of Forestry Engineering, Center of Agroveterinary Sciences, Santa Catarina State University, Lages 89500-000, SC, Brazil 
773 0 |t Remote Sensing  |g vol. 17, no. 16 (2025), p. 2904-2923 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244058985/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244058985/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244058985/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch