Semantic-Aware Cross-Modal Transfer for UAV-LiDAR Individual Tree Segmentation

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Remote Sensing vol. 17, no. 16 (2025), p. 2805-2830
Tác giả chính: Zhou Fuyang
Tác giả khác: He, Haiqing, Chen, Ting, Zhang, Tao, Yang Minglu, Ye, Yuan, Liu Jiahao
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3244059133
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17162805  |2 doi 
035 |a 3244059133 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhou Fuyang  |u School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China; fuyzhou@ecut.edu.cn (F.Z.); 2024100038@ecut.edu.cn (T.Z.); 2024120608@ecut.edu.cn (M.Y.) 
245 1 |a Semantic-Aware Cross-Modal Transfer for UAV-LiDAR Individual Tree Segmentation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Cross-modal semantic segmentation of individual tree LiDAR point clouds is critical for accurately characterizing tree attributes, quantifying ecological interactions, and estimating carbon storage. However, in forest environments, this task faces key challenges such as high annotation costs and poor cross-domain generalization. To address these issues, this study proposes a cross-modal semantic transfer framework tailored for individual tree point cloud segmentation in forested scenes. Leveraging co-registered UAV-acquired RGB imagery and LiDAR data, we construct a technical pipeline of “2D semantic inference—3D spatial mapping—cross-modal fusion” to enable annotation-free semantic parsing of 3D individual trees. Specifically, we first introduce a novel Multi-Source Feature Fusion Network (MSFFNet) to achieve accurate instance-level segmentation of individual trees in the 2D image domain. Subsequently, we develop a hierarchical two-stage registration strategy to effectively align dense matched point clouds (MPC) generated from UAV imagery with LiDAR point clouds. On this basis, we propose a probabilistic cross-modal semantic transfer model that builds a semantic probability field through multi-view projection and the expectation–maximization algorithm. By integrating geometric features and semantic confidence, the model establishes semantic correspondences between 2D pixels and 3D points, thereby achieving spatially consistent semantic label mapping. This facilitates the transfer of semantic annotations from the 2D image domain to the 3D point cloud domain. The proposed method is evaluated on two forest datasets. The results demonstrate that the proposed individual tree instance segmentation approach achieves the highest performance, with an IoU of 87.60%, compared to state-of-the-art methods such as Mask R-CNN, SOLOV2, and Mask2Former. Furthermore, the cross-modal semantic label transfer framework significantly outperforms existing mainstream methods in individual tree point cloud semantic segmentation across complex forest scenarios. 
653 |a Labels 
653 |a Datasets 
653 |a Deep learning 
653 |a Forestry 
653 |a Lidar 
653 |a Artificial neural networks 
653 |a Image annotation 
653 |a Mapping 
653 |a Data processing 
653 |a Unmanned aerial vehicles 
653 |a Semantic segmentation 
653 |a Trees 
653 |a Performance evaluation 
653 |a Statistical analysis 
653 |a Forests 
653 |a Image segmentation 
653 |a Carbon sequestration 
653 |a Three dimensional models 
653 |a Instance segmentation 
653 |a Image acquisition 
653 |a Methods 
653 |a Algorithms 
653 |a Semantics 
700 1 |a He, Haiqing  |u School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China; fuyzhou@ecut.edu.cn (F.Z.); 2024100038@ecut.edu.cn (T.Z.); 2024120608@ecut.edu.cn (M.Y.) 
700 1 |a Chen, Ting  |u School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China; ct_201607@ecut.edu.cn 
700 1 |a Zhang, Tao  |u School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China; fuyzhou@ecut.edu.cn (F.Z.); 2024100038@ecut.edu.cn (T.Z.); 2024120608@ecut.edu.cn (M.Y.) 
700 1 |a Yang Minglu  |u School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China; fuyzhou@ecut.edu.cn (F.Z.); 2024100038@ecut.edu.cn (T.Z.); 2024120608@ecut.edu.cn (M.Y.) 
700 1 |a Ye, Yuan  |u Shenzhen DJI Innovations Technology Co., Ltd., Shenzhen 518057, China; 2019213817@ecut.edu.cn 
700 1 |a Liu Jiahao  |u Jiangxi Helicopter Co., Ltd., Jingdezhen 333036, China; 2024120575@ecut.edu.cn 
773 0 |t Remote Sensing  |g vol. 17, no. 16 (2025), p. 2805-2830 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244059133/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244059133/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244059133/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch