RiceStageSeg: A Multimodal Benchmark Dataset for Semantic Segmentation of Rice Growth Stages

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 17, no. 16 (2025), p. 2858-2880
Autore principale: Zhang, Jianping
Altri autori: Chen Tailai, Li, Yizhe, Meng Qi, Chen Yanying, Deng Jie, Sun Enhong
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3244059286
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17162858  |2 doi 
035 |a 3244059286 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhang, Jianping  |u Chongqing Institute of Meteorological Sciences, Chongqing 401147, China; zhangjp@cqsqxj.com (J.Z.); chenyy@cqsqxj.com (Y.C.) 
245 1 |a RiceStageSeg: A Multimodal Benchmark Dataset for Semantic Segmentation of Rice Growth Stages 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The accurate identification of rice growth stages is critical for precision agriculture, crop management, and yield estimation. Remote sensing technologies, particularly multimodal approaches that integrate high spatial and hyperspectral resolution imagery, have demonstrated great potential in large-scale crop monitoring. Multimodal data fusion offers complementary and enriched spectral–spatial information, providing novel pathways for crop growth stage recognition in complex agricultural scenarios. However, the lack of publicly available multimodal datasets specifically designed for rice growth stage identification remains a significant bottleneck that limits the development and evaluation of relevant methods. To address this gap, we present RiceStageSeg, a multimodal benchmark dataset captured by unmanned aerial vehicles (UAVs), designed to support the development and assessment of segmentation models for rice growth monitoring. RiceStageSeg contains paired centimeter-level RGB and 10-band multispectral (MS) images acquired during several critical rice growth stages, including jointing and heading. Each image is accompanied by fine-grained, pixel-level annotations that distinguish between the different growth stages. We establish baseline experiments using several state-of-the-art semantic segmentation models under both unimodal (RGB-only, MS-only) and multimodal (RGB + MS fusion) settings. The experimental results demonstrate that multimodal feature-level fusion outperforms unimodal approaches in segmentation accuracy. RiceStageSeg offers a standardized benchmark to advance future research in multimodal semantic segmentation for agricultural remote sensing. The dataset will be made publicly available on GitHub v0.11.0 (accessed on 1 August 2025). 
653 |a Accuracy 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Datasets 
653 |a Growth stage 
653 |a Corn 
653 |a Remote sensing 
653 |a Phenology 
653 |a Crops 
653 |a Data integration 
653 |a Semantic segmentation 
653 |a Monitoring 
653 |a Time series 
653 |a Benchmarks 
653 |a Vegetation 
653 |a Spatial data 
653 |a Crop growth 
653 |a Image segmentation 
653 |a Unmanned aerial vehicles 
653 |a Precision agriculture 
653 |a Rice 
653 |a Image acquisition 
653 |a Methods 
653 |a Algorithms 
653 |a Crop management 
653 |a Multisensor fusion 
653 |a Semantics 
700 1 |a Chen Tailai  |u College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2022308130511@cau.edu.cn (T.C.); yizhe.li@cau.edu.cn (Y.L.); mengqi@cau.edu.cn (Q.M.) 
700 1 |a Li, Yizhe  |u College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2022308130511@cau.edu.cn (T.C.); yizhe.li@cau.edu.cn (Y.L.); mengqi@cau.edu.cn (Q.M.) 
700 1 |a Meng Qi  |u College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2022308130511@cau.edu.cn (T.C.); yizhe.li@cau.edu.cn (Y.L.); mengqi@cau.edu.cn (Q.M.) 
700 1 |a Chen Yanying  |u Chongqing Institute of Meteorological Sciences, Chongqing 401147, China; zhangjp@cqsqxj.com (J.Z.); chenyy@cqsqxj.com (Y.C.) 
700 1 |a Deng Jie  |u College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; djcc@cau.edu.cn 
700 1 |a Sun Enhong  |u Jiangjin Meteorologica Administration, Jiangjin Modern Agrometeorological Experimental Station of Chongqing, Chonqging 402260, China 
773 0 |t Remote Sensing  |g vol. 17, no. 16 (2025), p. 2858-2880 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244059286/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244059286/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244059286/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch